
Intro to Machine Learning

https://introml.mit.edu/

Lecture 4: Linear Classification (Logistic Regression)

Shen Shen
Feb 23, 2024

(some slides adapted from and)Tamara Broderick Phillip Isola

https://introml.mit.edu/
https://tamarabroderick.com/
https://web.mit.edu/phillipi/

Outline
Recap (ML pipeline, regression, regularization, GD)
Classification General Setup
(vanilla) Linear Classifier

Understand a given linear classifier
Linear separator: geometric intuition
Learn a linear classifier via 0-1 loss?

Linear Logistic Regression
Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Multi-class classification

ML algorithm

Hypothesis class
Hyperparameters

If/how to add regularization
Objective (loss) functions

Compute/optimize

Te
st
in
g

(p
re
di
ct
in
g)

new
input x

new
prediction y

Recap:
- OLS can have analytical
formula and "easy" prediction
mechanism
- Regularization
- Cross-validation
- Gradient descent

Outline
Recap (ML pipeline, regression, regularization, GD)
Classification General Setup
(vanilla) Linear Classifier

Understand a given linear classifier
Linear separator: geometric intuition
Learn a linear classifier via 0-1 loss?

Linear Logistic Regression
Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Multi-class classification

Classification Setup
General setup: Labels (and predictions) are in a discrete set

Classification Setup
General setup: Labels (and predictions) are in a discrete set

Outline
Recap (ML pipeline, regression, regularization, GD)
Classification General Setup
(vanilla) Linear Classifier

Understand a given linear classifier
Linear separator: geometric intuition
Learn a linear classifier via 0-1 loss?

Linear Logistic Regression
Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Multi-class classification

(vanilla) Linear Classifier
General setup: Labels (and predictions) are in a discrete set
Simplest setup: linear binary classification. that is, two possible labels, e.g.
{positive, negative} (or {dog, cat}, {pizza, not pizza}, {+1, 0}...)

y ∈

given a data point with features x ,x ,…x1 2 d

do some linear combination, calculate z = (θ x +1 1 θ x +2 2 ⋯+ θ x) +d d θ0

make a prediction: predict positive class if otherwise negative class.z > 0

We need to understand what are:
Linear separator
Normal vector
Linear separability

(The demo won't embed in PDF. But the direct link below works.)

https://shenshen.mit.edu/demos/separator.html

https://shenshen.mit.edu/demos/separator.html

0-1 loss L (g, a) =01 { 0
1
 if guess = actual
 otherwise

😊 Very intuitive
😊 Easy to evaluate
🥺 Very hard to optimize (NP-hard)

"Flat" almost everywhere (those local gradient=0, not helpful)
Has "jumps" elsewhere (don't have gradient there)

(The demo won't embed in PDF. But the direct link below works.)

https://shenshen.mit.edu/demos/01loss.html

https://shenshen.mit.edu/demos/01loss.html

Outline
Recap (ML pipeline, regression, regularization, GD)
Classification General Setup
(vanilla) Linear Classifier

Understand a given linear classifier
Linear separator: geometric intuition
Learn a linear classifier via 0-1 loss?

Linear Logistic Regression
Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Multi-class classification

Linear Logistic Regression
Despite regression in the name, really a hypothesis class for classification
Mainly motivated to solve the non-"smooth" issue of "vanilla" linear classifier (where
we used sign() function and 0-1 loss)
But has nice probabilistic interpretation too
Concretely, we need to know:

Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Recall: (Vanilla) Linear Classifier

calculate
predict positive class if otherwise
negative class.

z = (θ x +1 1 θ x +2 2 ⋯+ θ x) +d d θ0

z > 0

Linear Logistic Regression

calculate z = (θ x +1 1 θ x +2 2 ⋯+ θ x) +d d θ0

"squish" with a sigmoid/logistic function:

z

g = σ(z) =
1 + exp(−z)

1

predict positive class if otherwise,
negative class.

g > 0.5,

with some appropriate ,

can horizontally flip,

squeezing, expanding, shift

θ θ0

 vertically always monotonically "sandwiched"

between 0 and 1 (and never quite get to either 0 or 1)
 very nice/elegant gradient probabilistic interpretation

Comments about sigmoid

e.g. suppose, wanna predict whether to bike to school.
with given parameters, how do I make prediction?

1 feature: g(x) = σ θx+ θ(0)

=
1 + exp − θx+ θ{ (0)}

1

2 features: g(x) = σ θ x+ θ(⊤
0)

=
1 + exp − θ x+ θ{ (⊤

0)}
1

Learning a logistic regression classifier

training
data:

😍

🥺

Suppose labels y ∈ {+1, 0}
When see a training datum with ,
would like be high

i y =(i) 1
g(i)

When see a training datum with ,
would like be high

i y =(i) 0
1 − g(i)

i.e. for th training data point, want this
probability (likelihood)

to be high.

i

{g(i)

1 − g(i)
 if y = 1(i)

 if y = 0(i)

or, equivalently, want to
be high

g 1 − g(i)y(i) ((i))
1−y(i)

g(x) = σ θx+ θ(0)

Learning a logistic regression classifier

training
data:

😍

🥺

Suppose labels

For training data point would like to
be high

y ∈ {+1, 0}

i, g 1 − g(i)y(i) ((i))
1−y(i)

As logarithm is monotonic, would like
 to be highy log g +(i) (i) 1 − y log 1 − g((i)) ((i))

Add a negative sign, to turn the above into a loss
L (g , y) =nll

(i) (i) L (guess, actual) =nll

−(actual ⋅ log(guess) + (1 − actual) ⋅ log(1 − guess))

Want the above to be low for all data points, under i.i.d.
assumption, equivalently, wanna minimize J =lr

L g , y =
n
1 ∑i=1

n
nll ((i) (i)) L σ θ x + θ , y

n
1 ∑i=1

n
nll ((⊤ (i)

0) (i))

g(x) = σ θx+ θ(0)

Comments about J =lr L σ θ x + θ , y
n
1 ∑i=1

n
nll ((⊤ (i)

0) (i))

Also called cross-entropy loss
Convex, differentiable with
nice (elegant) gradients
Doesn't have a closed-form solution
Can still run gradient descent
But, a gotcha: when training data is
linearly separable

g(x) = σ θ x+ θ(T
0)

Regularization for Logistic Regression

J θ, θ ;D =lr (0) L σ θ x + θ , y +(
n

1

i=1

∑
n

nll ((⊤ (i)
0) (i))) λ∥θ∥2

No regularizing (think: why?)
Penalizes being overly certain
Objective is still differentiable & convex (gradient descent)

λ ≥ 0
θ0

Outline
Recap (ML pipeline, regression, regularization, GD)
Classification General Setup
(vanilla) Linear Classifier

Understand a given linear classifier
Linear separator: geometric intuition
Learn a linear classifier via 0-1 loss?

Linear Logistic Regression
Sigmoid function
Cross-entropy (negative log likelihood) loss
Optimizing the loss via gradient descent
Regularization, cross-validation still matter

Multi-class classification

How to represent class labels?
Suppose classes, then it's convenient to let y be a -dimensional one-hot vector K K

Generalize sigmoid to softmax

Generalize NLL to NLL multi-class (NLLM, or just cross-entropy)
Every data point incur a scalar loss:

z = θ x+⊤ θ0z = θ x+⊤ θ0

g = σ(z) =
1 + exp(−z)

1

two classes classesK

g = softmax(z) =

exp z / exp z(1) ∑i (i)

⋮
exp z / exp z(K) ∑i (i)

scalar

L (g, y) =nllm − y ⋅
k=1

∑
K

k log g(k)L (g, y) =nll − y log g + 1 − y log 1 − g(() ())

scalar

-by-1K

-by-1K

L (g, y) =nllm − y ⋅
k=1

∑
K

k log g(k)

Summary
Classification is a supervised learning problem, similar to
regression, but where the output/label is in a discrete set
Binary classification: only two possible label values
Linear binary classification: think of theta and theta-0 as defining a
d-1 dimensional hyperplane that cuts the d-dimensional input
space into two half-spaces. (This is hard conceptually!)
0-1 loss is a natural loss function for classification, BUT, hard to
optimize. (Non-smooth; zero-gradient)
NLL is smoother and has nice probabilistic motivations. We can
optimize using gradient descent!
Regularization is still important.
Generalizes to multi-class.

Thanks!

We'd love it for you to share some lecture .feedback

https://docs.google.com/forms/d/e/1FAIpQLSfG1vnfaOvy8jugeVHrJWJQB-_15IWBq683-XI8zlAJf6YZNg/viewform?usp=sf_link

