https:/ /introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 6: Neural Networks

Shen Shen
March 8§, 2024

(<~ the Live Slides)

(many slides adapted from Phillip Isola and Tamara Broderick)

https://introml.mit.edu/
https://slides.com/shensquared/introml-sp24-lec6
https://slides.com/shensquared/introml-sp24-lec6
https://web.mit.edu/phillipi/
https://tamarabroderick.com/

Outline

| Recap and neural networks motivation

e Neural Networks

= A single neuron
= A single layer
= Many layers

= Design choices (activation functions, loss functions choices)

« Forward pass

 Backward pass (back-propogation)

e.g. linear regression represented as a computation graph

learnable parameters (weights)

o Each data point incurs a loss of (w?z® 4wy — y)?
« Repeat for each data point, sum up the individual losses
o Gradient of the total loss gives us the "signal" on how to optimize for w, wy

e.g. linear logistic regression (linear classification) represented as a

computation graph
Vﬁ(w,wo)

m BN BN g
 wm = = -
o

&= .

learnable parameters (weights)

« Each data point incurs a loss of — (3 log g + (1 — y?) log (1 — g(V))
« Repeat for each data point, sum up the individual losses
o Gradient of the total loss gives us the "signal" on how to optimize for w, wy

Z2

We saw that, one way of getting complex input-output behavior is

1

to leverage nonlinear transformations

transform

-
¢ ([w17w2]—r> — [1,w1,w2,w%,x1x2,xg] 8 of

e.g. use for decision boundary

sign(0 + 0z1 + 0zy + 0x? + 4z x5 + 03 + 0)

+ ,,,,,, S Rsoresatbonateebaadobeh
;
-3 . =i, 0 1 2 3

 importantly, linear in ¢, non-linear in

Today (2nd cool idea): "stacking" helps too!

3
2
O—® y=siem) -
@2y s
W1 W2
3
Z = xTW1 2
. 1
a = sign(z) 0
-1
23 = aTW2 -2
-3

y = sign (23)

So, two epiphanies:

« nonlinearity empowers linear tools
« stacking helps

CHEESY CHICKEN
STACKER

BBQ TURKEY BACON
STACKER

(\ heads-up: all neural network graphs focus on a single data point for simple illustration.)

Outline

Recap and neural networks motivation

Neural Networks

= A single neuron
= A single layer
= Many layers

= Design choices (activation functions, loss functions choices)

Forward pass

Backward pass (back-propogation)

A single neuron is

o the basic operating "unit" in a neural network.
o the basic "node" when a neural network is viewed as computational graph.

z: m-dimensional input (a single data point)

8
X
°

w: weights (i.e. parameters)

o z— z: pre-activation scalar output
a L .
/ T f: activation function
. a: post-activation scalar output

neuron/, a function, maps a vector input x € R™ to a scalar output

inside the neuron, circles do function evaluation/computation

f: we engineers choose

w: learnable parameters

A single layer is

« made of many individual neurons.

o (# of neurons) = (layer output dimension).

« typically, all neurons in one layer use the same
activation f (if not; uglier /messier algebra)

o typically, no "cross-wire" between neurons. e.g. z;
doesn't influence a,. in other words, a layer has the
same activation applied element-wise. (softmax is an
exception to this, details later.)

o typically, fully connected. i.e. there's an edge
connecting z; to z;, forall ¢ € {1,2,3,...,m};j €

{1,2,...,n}.in other words, all z; influence all a;.

A (feed-forward) neural network is

Activation function f choices

1.5

1.5

o used to be popular

step(z) ReLU(z)
1 1
0.5 0.5
z z
—2 —1 1 2 -2 —1 1 2
—0.5 —0.5
o(z tanh(z
-ttt T o 1_()/' _______________ 1 _"____(_)____
0.5 0.5
-/ Z Z
—4 -2 2 4 —4 -2 2 4
—0.5 —0/5
-1 S ol R T

o firing rate of neuron

¢ o'(2) = 0(2) - (1 o(2))

ReLU is the de-facto activation choice nowadays

Default choice in hidden layers.

ReLU(z) = { 0 ifz< 0 « Pro: very efficient to implement, choose
z otherwise to let the gradient be:
= max(0, 2
(0,2) OReLU(z) [0, if =z2<0
0z | 1, if otherwise
15 ReLU(z)

—
[

Drawback: if strongly in negative region,
05 unit can be "dead" (no gradient).
Inspired variants like elu, leaky-relu.

The last layer, the output layer, is special lg

X = AO Wl Zl Al W2 Z2 AZ AI_—l WL ZT_ A_L
—_ |— || — o — | 2| —— —— 1| — | fL —— ~ |Loss
WO WO WO
g
/ — v _
~ ~ ~
layer 1 layer 2 layer L
(output layer)

« activation and loss depends on problem at hand
« we've seen e.g. regression (one unit in last layer, squared loss).

More complicated example: predict one class out of K possibilities

then last layer: K nuerons, softmax activation e.g., say K =5 classes

z g=A"

(1.3] [0.02)]

_ 5.1 e%i 0.90

) o . exp(z1)/ ; exp(zi) . K o os

g A | (7 - sGitmax| 4 | — ; 0.7 ijl e’ 0.01
exp(zx)/)_;exp(zi) [11 0.02]

Guess log(g) Ground truth label y LOSS

dolphin i} dolphin
cat I cat K
Enllm(g7Y) = - Zyk : log (gk)
H k=1
grizzly bear || grizzly bear
X | fish
angel fish angel fis
J u 9 How much better you
[i>chameleon | ® chameleon could have done
clown fish | I clown fish NG
iguana |l iguana
elephant | elephant

- 00 log prob 0 0 Prob - =00 - Loss 0

Outline

Recap and neural networks motivation

Neural Networks

= A single neuron
= A single layer
= Many layers

= Design choices (activation functions, loss functions choices)

Forward pass

Backward pass (back-propogation)

AR
\ (\’\\ \\OQ &
AR NG &
NI o
— — . — = “clown fish”

1L (...f2 (f1 (x“),wl) ,wz) ,...WL)

How do we optimize
JW)=X L(fr (- o (fi x9, W), W3),...W.),y?) though?

Forward propagation to obtain the output (model’s guess)

X=A" [Wi| 71 AL w2 z2 [] A2 Attt wh ozt [] At
- Wl — | fl| — W2 —— | f — - WL — | f ——|L.oss
0 0 0
~ T~ — ~ — ~_ ~_ ~ — ~
dloss Oloss dloss dloss dloss Oloss Oloss
0Z! 0Al 0Z2 0AZ2 dAL—1 oZL 0AL

Backpropagation to obtain gradients with respect to the loss

Backprop = gradient descent & the chain rule

Recall that, the chain rule says:
For the composed function: h(x) = f(g(x)), its derivative is: h'(x) = f'(g(x))g’ (x)

Here, our loss depends on the final output,

and the final output A* comes from a chain of composition of functions

\ \y
X=A" wt Z1 Al w2 72 A? AL wh 7zt Al
- Wi — | fl | — W2 — |2 — s — WL —— | fL | ——|Loss
0 0 0
~_— e~ — T~ 0 ~_ — N~ —
dloss dloss dloss dloss dloss dloss dloss
0Z! 0Al 0Z2

0A2 0AL—1 RVAS 0AL

Backprop = gradient descent & the chain rule

v

X=A0 wl ZI Al (W2 72 A2 AL-1 wt| ZzL Al
1| — fl —_— o — f2 —— e — L — f[- ——1l.oss
W, W; W,
~— e~ — T e~ | —
dloss Oloss dloss Oloss Oloss Oloss dloss

Backprop = gradient descent & the chain rule

v

X=A" W 7! Al w3 72 A? AL wt Zt A"
W, f % f o Wi i Loss
0 0 0
P P o - e P | S
dloss dloss Oloss dloss dloss dloss 0loss
RyVA L 072 0A? oAL—1 0ZL 0AL

Oloss QAW gzE+1) §AE+1) OAL=1Y) 9z(L) HAL) Hloss
07O — gz gAW) HzE+1) Hz(L-1) GAL-1) §z(L) 9AL)

(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/

Two different ways to represent a function

0.5

A 4

0.5 1

wo different ways to represent a function

Xout

0.5

0

0.9

Xin

Data transformations for a variety of neural net layers

Xout Xout
-1-05 0 05 1 -1-05 0 05 1
A4 & 4 & ATEAA

\ \ I ! ! / [
\ ! ' I I b
\ ! ! I I N
\ | | I , / ,’ P
\ \ I] I / ; I [I
\ \ | I i ,'l / I ! I
| |
xout. - inn ‘\ I| | lI ,l, XQut = JQHTH ’.I .'l J‘, : !
\ | I I | , ’ / I I
\ | [[, / | I I
\ 1 I I I / / I [I
\ 1 I I ! J / / 1 I
\ [I I li / i ! [|
\ | | I 1 / / I I |
—o 00 0o — @ ¢ ¢ ¢ >
—-1-05 0 05 1 —-1-050 05 1
Xin Xin
Xout Xout
-1-05 0 05 1 -1-050 05 1
) pA M
/! | | /7] |
/1 I I / , Pl
/gl I I !y | Pl
ol | | !’y | ol
Lo I I Iy | ;o
,/ P! ! ! .', ! ! b
1 [1 . . [
Xour = relu(Xin) | /) 1 Xout = sigmoid(xin) |)) |
| I | |
Jf 1' 1 [1 ,,f ,nf r, ;f 1
P [[, 1 I I [

/ ! I I I ’ / ! I [

/ I I I I / / / I I

/ ! | | | / 1 I I |

@ L ® ¢ > @ L < ® >
-1 -0.5 0 05 1 -5 =25 0 25 5

Activations

Parameters

Wiring graph

Equation

Xout — WXj_n + b

Mapping 1D

Xout y

Toue, = max(zi, ,0)

Xout |

Mapping 2D

Xout

class

Iogijts prob?bilities
W, reiu W, soft;nax

Training data

y
. \ N\
h

&,

Training iteration

P

I

softmax

linear

relu

linear

Optimizing parameters versus optimizing inputs

dolphin

chameleon

grizzly bear

angel fish

cat — J
clown fish

iguana

elephant

=~ 00000000 <

0J - How much the total cost is increased or decreased by changing the

8 9 parameters.

Optimizing parameters versus optimizing inputs

dolphin
chameleon
grizzly bear
angel fish
cat

clown fish
iguana
elephant

=~ 00000000 <«

8yj « How much the “cat” score is increased or decreased by changing
8X the image pixels.

Adversarial attacks

Input Adversarial signal

\/

X+r

dolphin

cat

grizzly bear

angel fish

School bus —— J
clown fish

iguana

ostrich

--OO0.0000 <

<— What adversarial signal r should we add to change the output label?

or

[“Intriguing properties of neural networks”, Szegedy et al. 2014]

Adversarial attacks

r X r

“School bus” “Ostrich’”

argmax p(y = ostrich|x +r) subject to |r|| <e

r

[“Intriguing properties of neural networks”, Szegedy et al. 2014

Summary

« We saw last week that introducing non-linear transformations of the inputs can
substantially increase the power of linear regression and classification hypotheses.

« We also saw that it’s kind of difficult to select a good transformation by hand.

« Multi-layer neural networks are a way to make (S)GD find good transformations for us!

« Fundamental idea is easy: specify a hypothesis class and loss function so that d Loss / d
theta is well behaved, then do gradient descent.

« Standard feed-forward NNs (sometimes called multi-layer perceptrons which is actually
kind of wrong) are organized into layers that alternate between parametrized linear
transformations and fixed non-linear transforms (but many other designs are possible!)

« Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu

« Typical output transformations for classification are as we have seen: sigmoid and /or
softmax

o There’s a systematic way to compute d Loss / d theta via backpropagation

We'd love it for you to share some lecture feedback.

Thanks!

https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

