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Outline

| Recap and neural networks motivation

e Neural Networks

= A single neuron
= A single layer
= Many layers

= Design choices (activation functions, loss functions choices)

« Forward pass

 Backward pass (back-propogation)



e.g. linear regression represented as a computation graph

learnable parameters (weights)

o Each data point incurs a loss of (w?z® 4wy — y)?
« Repeat for each data point, sum up the individual losses
o Gradient of the total loss gives us the "signal" on how to optimize for w, wy



e.g. linear logistic regression (linear classification) represented as a

computation graph
Vﬁ(w,wo)

m BN BN g
 wm = = -
o

&= .

learnable parameters (weights)

« Each data point incurs a loss of — (3 log g + (1 — y?) log (1 — g(V))
« Repeat for each data point, sum up the individual losses
o Gradient of the total loss gives us the "signal" on how to optimize for w, wy
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We saw that, one way of getting complex input-output behavior is

1

to leverage nonlinear transformations

transform

-
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e.g. use for decision boundary
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Today (2nd cool idea): "stacking" helps too!
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So, two epiphanies:

« nonlinearity empowers linear tools
« stacking helps

CHEESY CHICKEN
STACKER

BBQ TURKEY BACON
STACKER

(\ heads-up: all neural network graphs focus on a single data point for simple illustration.)
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A single neuron is

o the basic operating "unit" in a neural network.
o the basic "node" when a neural network is viewed as computational graph.

z: m-dimensional input (a single data point)

8
X
°

w: weights (i.e. parameters)

o z— z: pre-activation scalar output
a L .
/ T f: activation function
. a: post-activation scalar output

neuron/, a function, maps a vector input x € R™ to a scalar output

inside the neuron, circles do function evaluation/computation

f: we engineers choose

w: learnable parameters



A single layer is

« made of many individual neurons.

o (# of neurons) = (layer output dimension).

« typically, all neurons in one layer use the same
activation f (if not; uglier /messier algebra)

o typically, no "cross-wire" between neurons. e.g. z;
doesn't influence a,. in other words, a layer has the
same activation applied element-wise. (softmax is an
exception to this, details later.)

o typically, fully connected. i.e. there's an edge
connecting z; to z;, forall ¢ € {1,2,3,...,m};j €

{1,2,...,n}.in other words, all z; influence all a;.



A (feed-forward) neural network is




Activation function f choices
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o used to be popular
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o firing rate of neuron

¢ o'(2) = 0(2) - (1 o(2))




ReLU is the de-facto activation choice nowadays

Default choice in hidden layers.

ReLU(z) = { 0 ifz< 0 « Pro: very efficient to implement, choose
z  otherwise to let the gradient be:
= max(0, 2
(0,2) OReLU(z) [ 0, if =z2<0
0z | 1, if otherwise
15 ReLU(z)

—
[

Drawback: if strongly in negative region,
05 unit can be "dead" (no gradient).
Inspired variants like elu, leaky-relu.




The last layer, the output layer, is special lg

X = AO Wl Zl Al W2 Z2 AZ AI_—l WL ZT_ A_L
—_ |— || — o — | 2| —— —— 1| — | fL —— ~ |Loss
WO WO WO
g
/ — v _
~ ~ ~
layer 1 layer 2 layer L
(output layer)

« activation and loss depends on problem at hand
« we've seen e.g. regression (one unit in last layer, squared loss).

More complicated example: predict one class out of K possibilities

then last layer: K nuerons, softmax activation e.g., say K =5 classes

z g=A"

(1.3] [0.02)]

_ 5.1 e%i 0.90

) o . exp(z1)/ ; exp(zi) . K o os

g A | (7 - sGitmax| 4 | — ; 0.7 ijl e’ 0.01
exp(zx)/ )_;exp(zi) [ 11 0.02]




Guess log(g) Ground truth label y LOSS

dolphin i} dolphin
cat I cat K
Enllm(g7Y) = - Zyk : log (gk)
H k=1
grizzly bear || grizzly bear
X | fish
angel fish angel fis
J u 9 How much better you
[i>chameleon | ® chameleon could have done
clown fish | I clown fish NG
iguana |l iguana
elephant | elephant

- 00 log prob 0 0 Prob - =00 - Loss 0
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AR
\ (\’\\ \\OQ &
AR NG &
NI o
— — . — = “clown fish”

1L (...f2 (f1 (x“),wl) ,wz) ,...WL)

How do we optimize
JW)=X  L(fr (- o (fi x9, W), W3),...W.),y?) though?



Forward propagation to obtain the output (model’s guess)

X=A" [Wi| 71 AL w2 z2 [ ] A2 Attt wh ozt [ ] At
- Wl — | fl| — W2 —— | f — - WL — | f ——|L.oss
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Backpropagation to obtain gradients with respect to the loss



Backprop = gradient descent & the chain rule

Recall that, the chain rule says:
For the composed function: h(x) = f(g(x)), its derivative is: h'(x) = f'(g(x))g’ (x)

Here, our loss depends on the final output,

and the final output A* comes from a chain of composition of functions
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Backprop = gradient descent & the chain rule

v
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Backprop = gradient descent & the chain rule

v
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(The demo won't embed in PDF. But the direct link below works.)


https://playground.tensorflow.org/

Two different ways to represent a function
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wo different ways to represent a function

Xout

0.5

0

0.9

Xin



Data transformations for a variety of neural net layers
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Activations

Parameters

Wiring graph

Equation

Xout — WXj_n + b

Mapping 1D

Xout y

Toue, = max(zi, ,0)

Xout |

Mapping 2D

Xout




class

Iogijts prob?bilities
W, reiu W, soft;nax

Training data

y
. \ N\
h

&,

Training iteration

P

I

softmax

linear

relu

linear



Optimizing parameters versus optimizing inputs

dolphin

chameleon

grizzly bear

angel fish

cat — J
clown fish

iguana

elephant

=~ 00000000 <

0J - How much the total cost is increased or decreased by changing the

8 9 parameters.



Optimizing parameters versus optimizing inputs

dolphin
chameleon
grizzly bear
angel fish
cat

clown fish
iguana
elephant

=~ 00000000 <«

8yj « How much the “cat” score is increased or decreased by changing
8X the image pixels.



Adversarial attacks

Input Adversarial signal

\/

X+r

dolphin

cat

grizzly bear

angel fish

School bus —— J
clown fish

iguana

ostrich

--OO0.0000 <

<— What adversarial signal r should we add to change the output label?

or

[“Intriguing properties of neural networks”, Szegedy et al. 2014]



Adversarial attacks

r X r

“School bus” “Ostrich’”

argmax p(y = ostrich|x +r) subject to |r|| <e

r

[“Intriguing properties of neural networks”, Szegedy et al. 2014






Summary

« We saw last week that introducing non-linear transformations of the inputs can
substantially increase the power of linear regression and classification hypotheses.

« We also saw that it’s kind of difficult to select a good transformation by hand.

« Multi-layer neural networks are a way to make (S)GD find good transformations for us!

« Fundamental idea is easy: specify a hypothesis class and loss function so that d Loss / d
theta is well behaved, then do gradient descent.

« Standard feed-forward NNs (sometimes called multi-layer perceptrons which is actually
kind of wrong) are organized into layers that alternate between parametrized linear
transformations and fixed non-linear transforms (but many other designs are possible!)

« Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu

« Typical output transformations for classification are as we have seen: sigmoid and /or
softmax

o There’s a systematic way to compute d Loss / d theta via backpropagation



We'd love it for you to share some lecture feedback.

Thanks!


https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

