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Outline
Recap and neural networks motivation
Neural Networks

A single neuron
A single layer
Many layers
Design choices (activation functions, loss functions choices)

Forward pass
Backward pass (back-propogation)



e.g. linear regression represented as a computation graph
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Repeat for each data point, sum up the individual losses
Gradient of the total loss gives us the "signal" on how to optimize for w,w0
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Repeat for each data point, sum up the individual losses
Gradient of the total loss gives us the "signal" on how to optimize for w,w0
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e.g. linear logistic regression (linear classification)  represented as a
computation graph



We saw that, one way of getting complex input-output behavior is
to leverage nonlinear transformations
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Today (2nd cool idea): "stacking" helps too!
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So, two epiphanies:  

nonlinearity empowers linear tools
stacking helps

 
(👋 heads-up:  all neural network graphs focus on a single data point for simple illustration.)
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the basic operating "unit" in a neural network. 
the basic "node" when a neural network is viewed as computational graph. 

neuron , a function, maps a vector input  to a scalar output x ∈ Rm

inside the neuron, circles do function evaluation/computation
: we engineers choosef

: learnable parametersw

A single neuron is
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: -dimensional input (a single data point)x m

: weights (i.e. parameters)w

: pre-activation scalar outputz

: activation functionf

: post-activation scalar outputa



A single layer is

made of many individual neurons.
(# of neurons) = (layer output dimension).
typically, all neurons in one layer use the same
activation  (if not; uglier/messier algebra)f

typically, no "cross-wire" between neurons. e.g. 
doesn't influence . in other words, a layer has the
same activation applied element-wise. (softmax is an
exception to this, details later.)

z1

a2

typically, fully connected. i.e. there's an edge
connecting  to  for all 
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Activation function  choicesf

 used to be popular

firing rate of neuron

σ

σ (z) =′ σ(z) ⋅ (1 − σ(z))



ReLU is the de-facto activation choice nowadays

:=
∂z

∂ReLU(z) { 0,
1,

 if  z < 0
 if  otherwise

 
 
 

Default choice in hidden layers.
Pro: very efficient to implement, choose
to let the gradient be:

Drawback: if strongly in negative region,
unit can be "dead" (no gradient).
Inspired variants like elu, leaky-relu.

ReLU(z) = { 0
z

 if z < 0
 otherwise 

= max(0, z)



The last layer, the output layer, is special

 

activation and loss depends on problem at hand
we've seen e.g. regression (one unit in last layer, squared loss).

(output layer)

e.g., say  classesK = 5
More complicated example: predict one class out of  possibilities
then last layer:  nuerons, softmax activation 
 

K

K
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L (g, y) =nllm − y ⋅
k=1

∑
K

k log g( k)
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How do we optimize
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Backprop = gradient descent & the chain rule

Recall that, the chain rule says:
For the composed function:  its derivative is: h(x) = f(g(x)), h (x) =′ f (g(x))g (x)′ ′

Here, our loss depends on the final output,
and the final output  comes from a chain of composition of functionsAL



Backprop = gradient descent & the chain rule



Backprop = gradient descent & the chain rule



(



(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/

https://playground.tensorflow.org/




















)



Summary
We saw last week that introducing non-linear transformations of the inputs can
substantially increase the power of linear regression and classification hypotheses.
We also saw that it’s kind of difficult to select a good transformation by hand.
Multi-layer neural networks are a way to make (S)GD find good transformations for us!
Fundamental idea is easy:  specify a hypothesis class and loss function so that d Loss / d
theta is well behaved, then do gradient descent.
Standard feed-forward NNs (sometimes called multi-layer perceptrons which is actually
kind of wrong) are organized into layers that alternate between parametrized linear
transformations and fixed non-linear transforms (but many other designs are possible!)
Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu
Typical output transformations for classification are as we have seen: sigmoid and/or
softmax
There’s a systematic way to compute d Loss / d theta via backpropagation



Thanks!

We'd love it for you to share some lecture .feedback

https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

