

https://introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 6: Neural Networks

Shen Shen March 8, 2024

(the Live Slides)

(many slides adapted from Phillip Isola and Tamara Broderick)

Outline

- Recap and neural networks motivation
- Neural Networks
 - A single neuron
 - A single layer
 - Many layers
 - Design choices (activation functions, loss functions choices)
- Forward pass
- Backward pass (back-propogation)

e.g. linear regression represented as a computation graph

learnable parameters (weights)

- Each data point incurs a loss of $(w^T x^{(i)} + w_0 y^{(i)})^2$
- Repeat for each data point, sum up the individual losses
- Gradient of the total loss gives us the "signal" on how to optimize for w, w_0

learnable parameters (weights)

- Each data point incurs a loss of $-\left(y^{(i)}\log g^{(i)} + \left(1-y^{(i)}\right)\log\left(1-g^{(i)}\right)\right)$
- Repeat for each data point, sum up the individual losses
- Gradient of the total loss gives us the "signal" on how to optimize for w, w_0

We saw that, one way of getting complex input-output behavior is to leverage nonlinear transformations

0

x1

1

2

 x_1

Today (2nd cool idea): "stacking" helps too!

 $\begin{array}{c}
 2 \\
 1 \\
 0
 \end{array}$

 $-1 \\ -2 \\ -3$

 W_1

 W_2

So, two epiphanies:

- nonlinearity empowers linear tools
- stacking helps

(linearly heads-up: all neural network graphs focus on a single data point for simple illustration.)

Outline

- Recap and neural networks motivation
- Neural Networks
 - A single neuron
 - A single layer
 - Many layers
 - Design choices (activation functions, loss functions choices)
- Forward pass
- Backward pass (back-propogation)

A single neuron is

- the basic operating "unit" in a neural network.
- the basic "node" when a neural network is viewed as computational graph.

- *x*: *m*-dimensional input (a single data point)
- *w*: weights (i.e. parameters)
- *z*: pre-activation **scalar** output
- *f*: activation function
- *a*: post-activation **scalar** output

- neuron , a function, maps a vector input $x \in \mathbb{R}^m$ to a scalar output
- inside the neuron, circles do function evaluation / computation
- *f*: we engineers choose
- *w*: learnable parameters

A single layer is

- made of many individual neurons.
- (# of neurons) = (layer output dimension).
- typically, all neurons in one layer use the same activation *f* (if not; uglier/messier algebra)
- typically, no "cross-wire" between neurons. e.g. z₁
 doesn't influence a₂. in other words, a layer has the same activation applied element-wise. (softmax is an exception to this, details later.)
- typically, fully connected. i.e. there's an edge connecting x_i to z_j, for all i ∈ {1, 2, 3, ..., m}; j ∈ {1, 2, ..., n}. in other words, all x_i influence all a_j.

A (feed-forward) neural network is

Activation function f choices

ReLU is the de-facto activation choice nowadays

$${
m ReLU}(z) = \left\{egin{array}{cc} 0 & ext{if}\ z < 0 \ z & ext{otherwise} \end{array}
ight.
onumber \ = \max(0,z)$$

- **Default** choice in **hidden** layers.
- Pro: **very** efficient to implement, choose to let the gradient be:

$$rac{\partial {
m ReLU}(z)}{\partial z} := \left\{ egin{array}{ccc} 0, & {
m if} & z < 0 \ 1, & {
m if} & {
m otherwise} \end{array}
ight.$$

- Drawback: if strongly in negative region, unit can be "dead" (no gradient).
- Inspired variants like elu, leaky-relu.

- activation and loss depends on problem at hand
- we've seen e.g. regression (one unit in last layer, squared loss).

More complicated example: predict **one** class out of *K* possibilities then last layer: *K* nuerons, softmax activation

$$g = A^{L} = f^{L}(Z^{L}) = \operatorname{softmax}(Z^{L}) = \begin{bmatrix} \exp(z_{1}) / \sum_{i} \exp(z_{i}) \\ \vdots \\ \exp(z_{K}) / \sum_{i} \exp(z_{i}) \end{bmatrix}$$

e.g., say
$$K = 5$$
 classes
 Z^{L}
 $g = A^{L}$

 $\begin{bmatrix} 1.3 \\ 5.1 \\ 2.2 \\ 0.7 \\ 1.1 \end{bmatrix}$
 $e^{z_{i}}$
 $\sum_{j=1}^{K} e^{z_{j}}$
 $0.02 \\ 0.90 \\ 0.05 \\ 0.01 \\ 0.02 \end{bmatrix}$

Outline

- Recap and neural networks motivation
- Neural Networks
 - A single neuron
 - A single layer
 - Many layers
 - Design choices (activation functions, loss functions choices)
- Forward pass
- Backward pass (back-propogation)

How do we optimize

 $J(\mathbf{W}) = \sum_{i=1} \mathcal{L}\left(f_L\left(\dots f_2\left(f_1\left(\mathbf{x}^{(i)}, \mathbf{W}_1
ight), \mathbf{W}_2
ight), \dots \mathbf{W}_L
ight), \mathbf{y}^{(i)}
ight)$ though?

Forward propagation to obtain the output (model's guess)

Backpropagation to obtain gradients with respect to the loss

Backprop = gradient descent & the chain rule

Recall that, the chain rule says:

For the composed function: $h(\mathbf{x}) = f(g(\mathbf{x}))$, its derivative is: $h'(\mathbf{x}) = f'(g(\mathbf{x}))g'(\mathbf{x})$

Here, our loss depends on the final output, and the final output A^L comes from a chain of composition of functions

Backprop = gradient descent & the chain rule

Backprop = gradient descent & the chain rule

 $\frac{\partial \text{loss}}{\partial Z^{(\ell)}} = \frac{\partial A^{(\ell)}}{\partial Z^{(\ell)}} \frac{\partial Z^{(\ell+1)}}{\partial A^{(\ell)}} \frac{\partial A^{(\ell+1)}}{\partial Z^{(\ell+1)}} \cdots \frac{\partial A^{(L-1)}}{\partial Z^{(L-1)}} \frac{\partial Z^{(L)}}{\partial A^{(L-1)}} \frac{\partial A^{(L)}}{\partial Z^{(L)}} \frac{\partial \text{loss}}{\partial A^{(L)}}$ $\frac{n^{\ell} \times n^{\ell}}{n^{\ell} \times n^{\ell}} \frac{n^{\ell} \times n^{\ell+1}}{n^{\ell+1}} \frac{n^{\ell+1} \times n^{\ell+1}}{n^{\ell+1}} \cdots \frac{n^{L-1} \times n^{L-1}}{n^{L-1} \times n^{L-1}} \frac{\partial A^{(L)}}{\partial A^{(L-1)}} \frac{\partial A^{(L)}}{\partial A^{(L)}} \frac{\partial A^{(L)}}{\partial A^{(L)}}$

(

(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/

Two different ways to represent a function

Two different ways to represent a function

Data transformations for a variety of neural net layers

Optimizing parameters versus optimizing inputs

 $\frac{\partial J}{\partial \theta}$ \leftarrow How much the total cost is increased or decreased by changing the parameters.

Optimizing parameters versus optimizing inputs

How much the "cat" score is increased or decreased by changing the image pixels.

Adversarial attacks

 $\frac{\partial y_j}{\partial r} \leftarrow \text{What adversarial signal r should we add to change the output label?}$

["Intriguing properties of neural networks", Szegedy et al. 2014]

Adversarial attacks

 \mathbf{X}

y

$$\underset{\mathbf{r}}{\arg\max p(y = \texttt{ostrich} | \mathbf{x} + \mathbf{r}) \quad \text{subject to} \quad \|\mathbf{r}\| < \epsilon$$

["Intriguing properties of neural networks", Szegedy et al. 2014]

)

Summary

- We saw last week that introducing non-linear transformations of the inputs can substantially increase the power of linear regression and classification hypotheses.
- We also saw that it's kind of difficult to select a good transformation by hand.
- Multi-layer neural networks are a way to make (S)GD find good transformations for us!
- Fundamental idea is easy: specify a hypothesis class and loss function so that d Loss / d theta is well behaved, then do gradient descent.
- Standard feed-forward NNs (sometimes called multi-layer perceptrons which is actually kind of wrong) are organized into layers that alternate between parametrized linear transformations and fixed non-linear transforms (but many other designs are possible!)
- Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu
- Typical output transformations for classification are as we have seen: sigmoid and/or softmax
- There's a systematic way to compute d Loss / d theta via backpropagation

We'd love it for you to share some lecture feedback.

Thanks!