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https://shenshen.mit.edu/demos/gifs/russ_toddler.gif

Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic))

https://shenshen.mit.edu/demos/gifs/russ_toddler.gif
















https://say-can.github.io/img/demo_sequence_compressed.mp4

https://say-can.github.io/img/demo_sequence_compressed.mp4


https://s3.amazonaws.com/media-p.slid.es/videos/1350152/Jg2VLvbO/bi-manual_nutella_on_toast.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/PSVOiCD8/book_page_w__recovery.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/MmRrOmfd/bi-manual_berry_scooping.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1350152/M1Uv4St7/bi-manual_potato_peeling.mp4


(The demo won't embed in PDF. But the direct link below works.)

https://learning-to-paint.github.io

https://learning-to-paint.github.io/


Text

Reinforcement Learning with Human Feedback



Markov Decision Processes

Foundational tools and concept to understand RL.
Research area initiated in the 1950s (Bellman), known under various names (in various
communities):

Stochastic optimal control (Control theory)
Stochastic shortest path (Operations research)
Sequential decision making under uncertainty (Economics)
Dynamic programming, control of dynamical systems (under uncertainty)
Reinforcement learning (Artificial Intelligence, Machine Learning)

A rich variety of (accessible & elegant) theory/math, algorithms, and
applications/illustrations
As a result, quite a large variations of notations.
We will use the most RL-flavored notation



almost all transitions are deterministic:

Normally, actions take Mario to the “intended” state.

E.g., in state (7), action “↑” gets to state (4)

If an action would've taken us out of this world, stay put

E.g., in state (9), action “→” gets back to state (9)

except, in state (6), action “↑” leads to two possibilities:

20% chance ends in (2)

80% chance ends in (3)
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Running example: Mario in a grid-world 

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}
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example cont'd

1

1
1 1

−10

−10
−10 −10

reward of being in state 3, taking action ↑reward of being in state 3, taking action ↓reward of being in state 6, taking action ↓reward of being in state 6, taking action →

In state (3), any action gets reward +1

(state, action) pair can get Mario rewards:

Any other (state, action) pairs get reward 0

In state (6), any action gets reward -10

actions: {Up ↑, Down ↓,
Left ←, Right →}

goal is to find a gameplay strategy for Mario, to

 get maximum sum of rewards
get these rewards as soon as possible 



Definition and Goal
 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

 : the probability of transition from state  to  when
action  is taken.
T s, a, s( ′) s s′

a

 : a function that takes in the (state, action) and returns
a reward.
R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π

Sidenote:

In 6.390,  is
deterministic and
bounded.

R(s, a)

In 6.390,  is
deterministic.

π(s)

In this week,  and 
 are discrete set,

i.e. have finite
elements (in fact,
typically quite
small)

S

A



State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…( 0 0 0 1 1 1 )

r =0
R(s , a )0 0

r =1
R(s , a )1 1

r =2
R(s , a )2 2

r =4
R(s , a )4 4

r =5
R(s , a )5 5

r =6
R(s , a )6 6

r =7
R(s , a )7 7

…
r =3

R(s , a )3 3

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 γ R(s , a )4
4 4 γ R(s , a )5

5 5 γ R(s , a )6
6 6 γ R(s , a )7

7 7 …+ + + + + + +

time

how "good" is a trajectory?



time
State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…( 0 0 0 1 1 1 )

r =0
R(s , a )0 0

r =1
R(s , a )1 1

r =2
R(s , a )2 2

r =4
R(s , a )4 4

r =5
R(s , a )5 5

r =6
R(s , a )6 6

r =7
R(s , a )7 7

…
r =3

R(s , a )3 3

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 γ R(s , a )4
4 4 γ R(s , a )5

5 5 γ R(s , a )6
6 6 γ R(s , a )7

7 7 …+ + + + + + +

Now, suppose  the horizon (how many time steps), and  the initial state are given.
Also, recall the rewards  and policy  are deterministic.
There would still be randomness in a trajectory, due to stochastic transition.
That is, we cannot just evaluate

h s0

R(s, a) π(s)



For a given policy  the finite-horizon horizon-  (state) value functions are:π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t ( t ( t)) 0 ]

π(s) V (s)π

MDP
Policy evaluation

expected sum of discounted rewards, for starting in state  following policy  for
horizon 
expectation w.r.t. stochastic transition.
horizon-0 values are all 0.
value is a long-term thing, reward is a one-time thing.

s, π(s),
h.

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 γ R(s , a )4
4 4 γ R(s , a )5

5 5 γ R(s , a )6
6 6 γ R(s , a )7

7 7 …+ + + + + + +E[ ]



Recall:
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example: evaluating the "always " policy↑

 for all other seven states
 

π(s) = ‘‘ ↑ ",   ∀s

R(3, ↑) = 1

R(6, ↑) = −10

R(s, ↑) = 0

Suppose γ = 0.9

Horizon  = 0;
nothing happens

h

Horizon  = 1: simply
receiving the rewards

h

0 0

000

00

0

0

0 0

000

00

1

−10

V (s)π
0

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t ( t ( t)) 0 ]

R(s , a )0 0 .9R(s , a )1 1 (.9) R(s , a )2
2 2 …+ +E[ ]

V (s)π
1

 terms insideh



Recall:
 
 
 
 
 
 
π(s) =  ‘‘ ↑ ",   ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9
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Horizon  = 2h

R(s , a )0 0 γR(s , a )1 1

V (s) :=π
h E γ R s ,π s ∣ s = s,π[∑t=0

h−1 t ( t ( t)) 0 ]

V (s)π
2

R(s , a )0 0 .9R(s , a )1 1+E[ ]

 terms inside2



Recall:
 
 
 
 
 
 
π(s) =  ‘‘ ↑ ",   ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

−900

0 −9.28
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R(s , a )0 0 γR(s , a )1 1

Horizon  = 2h

0

if s =0 1, receive R(1, ↑) + γR(1, ↑)

receive R(6, ↑) + γ[.2R(2, ↑) + .8R(3, ↑)]

if s =0 8, receive R(8, ↑) + γR(5, ↑)

R(s , a )0 0 .9R(s , a )1 1+E[ ]

 terms inside2

0

if s =0 2, receive R(2, ↑) + γR(2, ↑)

1.9
if s =0 3, receive R(3, ↑) + γR(3, ↑)

V (s) :=π
h E γ R s ,π s ∣ s = s,π[∑t=0

h−1 t ( t ( t)) 0 ]

0

V (s)π
2

if s =0 4, receive R(4, ↑) + γR(1, ↑)

if s =0 7, receive R(7, ↑) + γR(4, ↑)

if s =0 9, receive R(9, ↑) + γR(6, ↑)

if s =0 6,

if s =0 5, receive R(5, ↑) + γR(2, ↑)

6
action ↑

R(6, ↑)

2

3

action ↑

action ↑

R(3, ↑)γ

20%

80%

R(2, ↑)γ



0 0

000

00

0

0

0 0

−900

00

1.9

−9.28

0 0

000

00

1

−10

V (s)π
0 V (s)π

1 V (s)π
2

Now, let's think about V (6)π
3

2

3

action ↑

action ↑

R(3, ↑)

R(2, ↑)γ2

γ2

γ2R(2, ↑)

R(3, ↑)γ2

6
action ↑

R(6, ↑)R(6, ↑)

Recall:
 
 
 
 
 
 
π(s) =  ‘‘ ↑ ",   ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

2

3

action ↑

action ↑

R(2, ↑)

R(3, ↑)

γ

γ

R(2, ↑)γ

R(3, ↑)γ

20%20%

80%80%
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V (6) =π
3 R(6, ↑) R(2, ↑)γ γ2 R(2, ↑)20% [+ + ] R(3, ↑)γ R(3, ↑)γ280% [+ + ]

+ R(2, ↑)γ γ R(2, ↑)20% [ + ]R(6, ↑)= R(3, ↑)γ R(3, ↑)80% [+ + ]γ

R(6, ↑)= γ20%+ V (2)π
2 γ80%+ V (3)π

2



Bellman Recursion
expected sum of discounted rewards, for starting

in state  follow policy  for horizon s, π(s) h

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s

s′

∑ ( ′) π
h−1 ( ′)

immediate reward, for being
in state  and taking the
action given by policy 

s

π(s) weighted by the probability of getting to
that next state  s′

 horizon values
at a next state 

(h− 1)

s′

discounted by  γ



finite-horizon policy evaluation  infinite-horizon policy evaluation

 is now necessarily <1 for convergence too γ

Bellman equation

 many linear equations∣S∣

For any given policy  the infinite-horizon

(state) value functions are

π(s),

V (s) :=π E γ R s ,π s ∣ s = s,π , ∀s[∑t=0
∞ t ( t ( t)) 0 ]

V (s) =π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ ( ′) π ( ′)

For a given policy  the finite-horizon horizon-

(state) value functions are:

π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s[∑t=0

h−1 t ( t ( t)) 0 ]

Bellman recursion

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ ( ′) π
h−1 ( ′)



Definition of : for any given horizon  (possibly infinite horizon), 
 for all  and for all possible policy .

For a fixed MDP, optimal values  must be unique.
Optimal policy  might not be unique. (Think e.g. symmetric)
In finite horizon, optimal policy depends on horizon.
In infinite horizon, horizon no longer matter. Exist a stationary optimal policy.

π∗ h V (s) ⩾π∗
h

V (s)π
h s ∈ S π

V (s)π∗
h

π∗

Optimal policy π∗



 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining  steps(h− 1)

(Optimal) state-action value functions Q (s, a)h

 values vs.  valuesV Q

 is defined over state space;  is defined over (state, action) space.V Q

Any policy can be evaluated to get  values; whereas  per our definition,
has the sense of "tail optimality" baked in.

V Q

 can be derived from , and vise versa.V (s)π∗
h Q (s, a)h

 is easier to read "optimal actions" from.Q



Recall:
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example: recursively finding Q (s, a)h
γ = 0.9

 is the expected sum of discounted rewards forQ (s, a)h

1

1
1 1

−10

−10

−10
−10Q (s, a)0

0 00

0 00

0 00

0 00

0 00

0 000 000 000 00

0 00

0 000 0 0

0 000 0 0

0 000 0 0

States and
one special
transition:

R(s, a)

0 0

0 0

0 1

0 −100

0 0

0 000 00 00 0

0 00

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a)1

−10

1

−10
−10

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining  steps(h− 1)



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, →2 )

receive R(3, →)

= 1 + .9max Q 3, aa′
1 ( ′)

next state  = 3, act optimally for the
remaining one timestep

receive 

s′

max Q 3, aa′
1 ( ′)

Q (3, →2 ) = R(3, →)  + γmax Q 3, aa′
1 ( ′)

= 1.9

0

0

0

0

1.9



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ↑2 )

receive R(3, ↑)

= 1 + .9max Q 3, aa′
1 ( ′)

next state  = 3, act optimally for the
remaining one timestep

receive 

s′

max Q 3, aa′
1 ( ′)

Q (3, ↑2 ) = R(3, ↑)  + γmax Q 3, aa′
1 ( ′)

= 1.9

0

0

0

0

1.9
1.9

States and
one special
transition:



Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0 000 1
1

000

0 000

0 000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ←2 )

receive R(3, ←)

= 1 + .9max Q 2, aa′
1 ( ′)

next state  = 2, act optimally for the
remaining one timestep

receive 

s′

max Q 2, aa′
1 ( ′)

Q (3, ←2 ) = R(3, ←)  + γmax Q 2, aa′
1 ( ′)

= 1

0

0

0

0

1.9
1.9

1



Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (3, ↓2 )

receive R(3, ↓)

= 1 + .9max Q 6, aa′
1 ( ′)

next state  = 6, act optimally for the
remaining one timestep

receive 

s′

max Q 6, aa′
1 ( ′)

Q (3, ↓2 ) = R(3, ↓)  + γmax Q 6, aa′
1 ( ′)

= −8

0

0

0

0

1.9
1.9

1
−8



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (6, ↑2 )

receive R(6, ↑)
act optimally for one more timestep,
at the next state  s′

= R(6, ↑)  + γ[.2max Q 2, a +a′
1 ( ′) .8max Q 3, a ]a′

1 ( ′)

0

0

0

0

1.9
1.9

1
−8

20% chance,  = 2, act optimally,
receive 

s′

max Q 2, aa′
1 ( ′)

80% chance,  = 3, act optimally,
receive 

s′

max Q 3, aa′
1 ( ′)

−9.28

= −10 + .9[.2 ∗ 0 + .8 ∗ 1] = −9.28



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Q (6, ↑2 ) = R(6, ↑)  + γ[.2max Q 2, a +a′
1 ( ′) .8max Q 3, a ]a′

1 ( ′)

0

0

0

0

1.9
1.9

1
−8

−9.28

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a , ∀s, a∑s′ ( ′) a′
h−1 ( ′ ′)

= R(s, a)

in general 



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

0

0

0

0

1.9
1.9

1
−8

−9.28

π (s) =h
∗ argmax Q (s, a), ∀s,ha

h

what's the optimal action in state 3, with horizon 2, given by 
 

π (3) =2
∗ ?

in general 

either up or right 



Given the finite horizon recursion

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ ( ′ ′)

1. for   :
2.       
3. while True:
4.       for   :
5.             
6.       if 
7.             return 
8.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s ∈ S, a ∈ A

Q (s, a) ←new  R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ old  ( ′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′
h−1 ( ′ ′)

We should easily be convinced of the infinite horizon equation

Infinite-horizon Value Iteration

if instead of relying on
line 6 (convergence

criterion), we run the
block of (line 4 and 5)
for  times, then the
returned values are
exactly horizon-  Q

values

h

h



Thanks!

We'd appreciate your  on the lecture.feedback

https://docs.google.com/forms/d/e/1FAIpQLSdMwDZOmugTpWJIC4QeqCTcfTr9Oujayz4PArd9I_a-mnPRcg/viewform

