g 4
" i><0v>q https:/ /introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 11: Reinforcement Learning

Shen Shen
April 26, 2024

https://introml.mit.edu/

Outline

Kecap: Markov Decision Processes

« Reinforcement Learning Setup
= What's changed from MDP?

e Model-based methods
e Model-free methods

= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation
= (neural network) Q-learning
e RL setup again

= What's changed from supervised learning?

MDP Definition and Goal

« S : state space, contains all possible states s.

« A: action space, contains all possible actions a.

e T(s,a,s’): the probability of transition from state s to s’ when
action a is taken.

e R(s,a) : a function that takes in the (state, action) and returns
a reward.

« v € |0,1]: discount factor, a scalar.

 m(s) : policy, takes in a state and returns an action.

Ultimate goal of an MDP: Find the "best" policy .

Ty = rh = T = ry = rqy = s — Te — rT =

30,00 31,a1 32,a2 83,(13 34,a4 55,a5 36,a6 37,07
Reward r
Reward R(s, a)
Action a .
Transition T (s, a, s')
State s
‘ time

a trajectory (aka an experience or rollout) 7 = (sg,aq, 7o, S1,01,71,---)

how "good" is a trajectory?

R(sp,a0) + ~R(s1,a1) + ’)/2R(82,a2) + 73R(33,a3) + 74R(34,a4) + 75R(35,a5) + 76R(36,a6) + 77R(37,a7)

I.! J...I - : .. :
F Running example: Mario in a grid-world

* 9 possible states

« 4 possible actions: {Up 1, Down |, Left «—, Right —}

e almost all transitions are deterministic:

= Normally, actions take Mario to the “intended” state.

o E.g., in state (7), action “1” gets to state (4)
= If an action would've taken us out of this world, stay put
o E.g., in state (9), action “—" gets back to state (9)
= except, in state (6), action “1” leads to two possibilities:
o 20% chance ends in (2)
o 80% chance ends in (3)

~ |
S example cont'd

« (state, action) pair can get Mario rewards:

i) 3 NG o In state (3), any action gets reward +1 @
v | 4s0% | !
oo 80% ! I
[5 6 | 299 e In state (6), any action gets reward -10 L
-10 i ol
7 8 9 Any other (state, action) pairs get reward 0

actions: {Up f,Down |, | goal is to find a gameplay policy strategy for Mario, to get

Left <, Right —} : : : .
i maximum expected sum of discounted rewards, with a discount

facotor v = 0.9

Recall:

E C MDP
AN Policy evaluation
- |4 R0% !
20% [+ .
4 5 6 '
7 8 9 E VO(s) o] o] o Vis)| o] ol 1 V2(s) ol ol1o
' 0 0| O 0 o |—10 0] o [-928)
m(s) = “17, Vs o|lofo 0| oo 0| 0|9 TR(2, 1) 7" R(2,1)
R(3,1) =1 % G (2)
1) @ action 1 action 1
v=20.9

Now, let's think about V?(6)

V2 (6)

action 1 action 1

vR(3, 1) Y2 R(3, 1)

R(6,1) -+ 20% [y R(2,1) + ¥ R(2,1) | + 80% [v R(3, 1) +7° R(3, 1)]

R(6,1) +20%~v [R(2,1) + v R(2,1)] + 80% v R, 1) + 7R3, 1)]

R(6, 1) + 20% ~ V2(2) + 80% 7

s

V:(3)

finite-horizon policy evaluation

For a given policy 7 (s), the finite-horizon horizon-h

(state) value functions are:

Vi(s) i= B[S0 ¥R (5,7 (s1)) | 80 = 8,7, Vs

Bellman recursion

Vi(s) = +’yZT s,m(s),s) VI~ 1(3'),Vsi

infinite-horizon policy evaluation

For any given policy 7 (s), the infinite-horizon
(state) value functions are

Ve(s) :=E D20 YR (s, m(s¢)) | so = s,7|,Vs

7 is now necessarily <1 for convergence too in general

' Bellman equation

Va(s) =R(s,7(5)) + 7> _T(s,m(s),s) Vx (s'),Vs

e |S| many linear equations

g

Qh(s, a) is the expected sum of discounted rewards for

example: recursively finding Q" (s, a)

o starting in state s,
o take action a, for one step

« act optimally there afterwards for the remaining (h — 1) steps

Recall:

States and
one special
transition:

R(s,a)

v

0.9

4 R0%

fn Q" (s, a) is the expected sum of discounted rewards for Recall: 7= 0.9
- o starting in state s, s |
« take action a, for one step States and o
) one special A . 6
o act optimally there afterwards for the transition:
remaining (h — 1) steps T | s | oo
Q'(s,a) = R(s,a) Q*(s,a) » receive R(6, 1)
0 0 1 1.9 e act optimally for one more timestep,
1
0 010 h U h ! 2 N at the next state s’
0 —8
0 0 ~10 —9.28 « 20% chance, s’ =2, act optimally,
0 01 0 AW _1_1;10 receive max, Q! (2,a’)
0 80% chance, s’ = 3, act optimally,
0) 0f 9 0 of 9) 0 receive maxy Q' (3,a’)

Let's consider Q%(6,1) = R(6,1) + v[.2max, Q' (2,d’) + .8 max, Q' (3,d')]
=—10+.9[.2%0+ .8 x1] = —9.28

I Q"(s,a) is the expected sum of discounted rewards for Recall: 7= 0.9
2 o starting in state s,

1 2 3
. States and v |4 80%
o take action a, for one step one special REaE
o act optimally there afterwards for the transition:
remaining (h — 1) steps O B
Q1(37a) 0 0 1 Qz(saa’) 1.9
_ 0 X ofoX of 1X 1 1 X1.9
T R(S’ CL) 0 0 1 —8
0 0 —10 <9.28
0 0] 0 0 |—-10X-10}
—10
0
0 0f O 0| O 0
0 0 0

Q%(6,1) =R(6, 1) + v[.2max, Q' (2,ad') + .8 max, Q' (3,d’)]

in general Q"(s,a) = R(s,a) + 7>, T (s,a,s')max, Q" ! (s',a'),Vs,a

I Q"(s,a) is the expected sum of discounted rewards for Recall: 7= 0.9
2 o starting in state s,

1 2 3
« take action a, for one step States and TR
. one special A . o
o act optimally there afterwards for the transition:
remaining (h — 1) steps T | s | oo
Ql(saa) 0 0 1 Qz(saa’) 1.9
0 X ofoX o X1 1 XX1.9
0 0 1 -8
0 0 —10 <9.28
0 0 0 0 |-10<-10
0 —10
0 0
0 0f O 0| O 0
0 0 0
what's the optimal action in state 3, with horizon 2, given by 75 (3) =? either up or right

in general 7} (s) = arg max, Q"(s,a), Vs, h

Given the finite horizon recursion
Q"(s,a) =R(s,a) + 7>, T(s,a,s) maxy Q"' (s',a)

We should easily be convinced of the infinite horizon equation

Q(s,a) =|R(s,a) +v>., T(s,a,s)maxy Q(s',a’)

Infinite-horizon Value Iteration
l.forse S,ac A:

2. Qold (S, a) = 0
3. while True:
4. forseS,ac A:

QHGW (87 CL) — R(S, a’) T Y Zs’ T (37 a, 3/) max, Qold (5’7 CL/)
if maXs.q IQold (37 CL) — Qnew (37 a’)‘ <E€:

return Qv

Qold — Qnew

® N o U

Outline

« Recap: Markov Decision Processes

«[Reinforcement Learning Setup
= What's changed from MDP?

e Model-based methods
e Model-free methods

= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation
= (neural network) Q-learning
e RL setup again

= What's changed from supervised learning?

4

i

-~

-~

N |

-~

Running example: Mario in a grid-world
(the Reinforcement-Learning Setup)

* 9 possible states

« 4 possible actions: {Up 1, Down |, Left «—, Right —}

o all transitions probabilities are unknown.

- (state, action) pair gets Mario unknown rewards.

 goal is to find a gameplay policy strategy for Mario, to get
maximum expected sum of discounted rewards, with a discount

facotor v = 0.9

RL. Definition and Goal

« §:state space, contains all possible states s.
« A: action space, contains all possible actions a.

e T (e/ a e/) - the Prnhnhﬂi’r); of transition from state s to s when

action a is taken.

. .B.@, n) -afunction that takegin the (state_action)]
areward.

« v € |0, 1]: discount factor, a scalar.

 m(s) : policy, takes in a state and returns an action.

Ultimate goal of an RL: Find the "best" policy .

Outline

« Recap: Markov Decision Processes

« Reinforcement Learning Setup
= What's changed from MDP?

-model-based methods
e Model-free methods

= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation
= (neural network) Q-learning
e RL setup again

= What's changed from supervised learning?

(MDP)-Model-Based Methods (for solving RL)

Keep playing the game to approximate the unknown rewards and transitions.
Rewards are particularly easy:

e.g. by observing what reward r received from being in state 6 and take 1 action, we
know R(6, 1)
Transitions are a bit more involved but still simple:

e.g. play the game 1000 times, count the # of times (we started in state 6, take 1
action, end in state 2), then, roughly, T(6, 1,2) = (that count/1000)

Now, with R, T estimated, we're back in MDP setting.

In Reinforcement Learning;:

« Model typically means MDP tuple (S, A, T,R,)
 The learning objective is not referred to as hypothesis explicitly, we simply just
call it the policy.

Outline

Recap: Markov Decision Processes

Reinforcement Learning Setup
= What's changed from MDP?
Model-based methods

Model-tree methods
= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation

= (neural network) Q-learning
RL setup again

= What's changed from supervised learning?

How do we learn a good policy without learning transition or rewards explicitly?

We kinda already know a way: Q functions!

2.4) (Recall from MDP lab)

We switch to an infinite-horizon scenario. For our stochastic machine, here is the infinite-horizon () function (computed via
value iteration) for -y near 1.

wash paint eject
dirty [[2.32274541 -0.70048204 0.]
clean [2.32274541 5.71581775 0.]
painted [2.32274541 6.9 10.]
ejected [0. 0. 0. 11

What is the optimal thing to do with a clean object?
What will you do if it becomes dirty?

Does this optimal policy make intuitive sense?

So once we have "good" Q values, we can find optimal policy easily.

But didn't we calculate this Q-table via value iteration using transition and rewards explicitly?

Indeed, recall that, in MDP:

 Finite horizon recursion
Q"(s,a) =R(s,a) + 7>, T (s,a,s") maxy Q" (s, a’)
» Infinite horizon equation
Q(s,a) =[R(s,a) +v>., T(s,a,s)maxy Q(s',a’)
e Infinite-horizon Value Iteration
l.forse S,ac A:

2. Qold (S, a) = 0
3. while True:
4, forseS,ac A:

Quew (8,@) <[R(s,a) +7>°, T (5,a,8) maxy Qua (s',a")

if max; , |Qod (8;2) — Quew (5,a)| < €:

return Q.

Qold < Qnew

® N & U

» value iteration relied on having full access to R and T

Quew (8,a) <+ R(s,a) + v Z T (s,a,s") max Qo (8',a’)
e hmm... perhaps, we could simulafé (s,a), observe r and s’, and just use
r + v max Qo (s',a)
as the proxy for the r.h.s. assignment?

« BUT, this is basically saying the realized s’ is the only possible next state; pretty rough!
We'd override any previous "learned" Q values.

e.g. Qnew (67 T) «— —10 + 8 maa‘x Qold (27 a’l) Qnew (6’ T) <+ —10 + sz}x Qold (37 CLI)

o better way is to smoothly keep track of what's our old belief with new evidence:

Quew (5,0) (1~)Quua (5,0) +@ (7 + ymax Qu (s',a))

old belief learning rate target

VALUE-ITERATION (S, A, T, R, 7, €) Q-LEARNING (S, A, 7, so, @)

l.fors e S,ac A:

2. Qold (S, a) =0
3. while True:

4. forse S,ac A:

l.fors € S,ac A:

2. Qold (S, a) =0
3.8 < sy

4. while True:

5. Quew (8,a) < R(s,a) +v> ., T (s,a,s") maxy Qoqa (s',a’) 5. a < select_action (s, Qo4(s,a))
6. if max;, |Qold (8;2) — Qnew (5,a)| < €: 6. r,s = execute(a)
7. return Qpey 7. |Quew(s;a) < (1 — a)Qoua (s,a) +
8. Qo ¢ Quew a(r +ymaxy Qoa(s’,a’))
8. s+ &
9. ifmax, |Qold (8,a) — Quew (8,0)| < €:
10. return Q ey

11. Qold — Qnew

"calculating” "estimating”

Q-LEARNING (S, A, 7,89, @) « Remarkably, still can converge. (So long

S, A are finite; we visit every state and
action infinity-many times; and o decays.

l.fors € S,ac A:

: e Line7:
2. Qold (S7 a’) =0 :
3.5+ s9 E Quew (8,0) < (1 — @)Qold (8,0) + @ <7“ + 7y max Qoia (8, al))
4. while True: : :
5. a < select_action (s, Qo4(s,a)) : 1S equivalently:
6. r,s = execute(a) |
7. Qnew(S, a) T (1 — a)Qold (3, a) + : Qnew(sa a') A Qold (87 a’) o ([T + 7 maxy QOld(s,? a’/)] o QOld (87 a))
[[:

a(r + ymaxy Qua(s’,a’)) ! old belief + learning (target — old belief)
8. s« ¢ : rate
0. if maxs,a ’Qold (S, a) - Qnew (Sa CL)| <e€: :

10. return Qpey . pretty similar to SGD.

11 Qold — Qnew
e Line 5, a sub-routine.

o If our @ values are estimated quite accurately (nearly converged to the true @
values), then should act greedily

= arg max, Q"(s,a), as we did in MDP.
« During learning, especially in early stages, we'd like to explore.
 e-greedy action selection strategy:

= with probability 1 — ¢, choose arg max, Q(s, a)
= with probability €, choose an action a € A uniformly at random

« Benefit: get to observe more diverse (s,a) consequences.

o exploration vs. exploitation.

Outline

« Recap: Markov Decision Processes

« Reinforcement Learning Setup
= What's changed from MDP?

« Model-based methods
e Model-free methods

= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation

= (neural Network) QO-fearming_———__|
e RL setup again

= What's changed from supervised learning?

e Q-learning only is kinda sensible for tabular setting.

« What do we do if § and/or A are large (or continuous)?

e Recall from Q-learning algorithm, key line 7 :
Quew (8,a) + (1 — @)Qou (s,a) + @ <r + 7y max Qoa (8, a’))
is equivalently:
Qnew(37 a') A Qold (3’ a') +Ha ([’I" + 7y maXgy Qold(sla al)] I Qold (57 a))

old belief + learning | (target — old belief)
rate

« Can be interpreted as we're minimizing;:
(Q(s,0) = (r + ymaxy Q (s',a))’

via gradient method!

Outline

« Recap: Markov Decision Processes

« Reinforcement Learning Setup
= What's changed from MDP?

« Model-based methods
e Model-free methods

= (tabular) Q-learning

o e-greedy action selection

o exploration vs. exploitation

= (neural network) Q-learning

o[RESCtup again

= What's changed from supervised learning?

Supervised learning

Prediction y Ground truth label y Loss
fo: X — RE _iykloggk
dolphin || dolphin b=l
cat|fj cat
grizzly bear || grizzly bear
f angel fish |||} angel fish
chameleon (Il @ chameleon
clown fish | IIGzGzG clown fish || IIGzGEEE [
iguana |l iguana
elephant | elephant
0 1 0 1 0

- If explicit "good” state-action pair is given, also supervised learning.
» Behavior cloning or imitation learning.
- But what if no explicit guide?

raw pixels hidden layer

i\\ : probability of
7 @ moving UP
»xv"ég‘A

SO (O

i
Pong > A

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

o If no direct supervision is available?

« Strictly RL setting. Interact, observe and get data. Use rewards/value as "coy"
supervision signal.

DOWN, g DOWN_o UP o \WIN
>® LOSE

DOWN o UP o | OSE
>® WIN

[Adapted from Andrej Karpathy: http://karpathy.github.io/2016/05/31/rl/]

We'd appreciate your feedback on the lecture.

Thanks!

https://docs.google.com/forms/d/e/1FAIpQLSe_lTgv0hIuYw420V02jBBaSSAK_8HSFqsdZ5MmTmFJbKaaOQ/viewform?usp=sf_link

