
Intro to Machine Learning

https://introml.mit.edu/

Lecture 11: Reinforcement Learning

Shen Shen
April 26, 2024

https://introml.mit.edu/

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

MDP Definition and Goal
 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

 : the probability of transition from state to when
action is taken.
T s, a, s(′) s s′

a

 : a function that takes in the (state, action) and returns
a reward.
R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π

State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…(0 0 0 1 1 1)

r =0
R(s , a)0 0

r =1
R(s , a)1 1

r =2
R(s , a)2 2

r =4
R(s , a)4 4

r =5
R(s , a)5 5

r =6
R(s , a)6 6

r =7
R(s , a)7 7

…
r =3

R(s , a)3 3

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 γ R(s , a)4
4 4 γ R(s , a)5

5 5 γ R(s , a)6
6 6 γ R(s , a)7

7 7 …+ + + + + + +

time

how "good" is a trajectory?

almost all transitions are deterministic:

Normally, actions take Mario to the “intended” state.

E.g., in state (7), action “↑” gets to state (4)

If an action would've taken us out of this world, stay put

E.g., in state (9), action “→” gets back to state (9)

except, in state (6), action “↑” leads to two possibilities:

20% chance ends in (2)

80% chance ends in (3)

1 2

987

54

3

6

80%
20%

Running example: Mario in a grid-world

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}

1 2

987

54

3

6

80%
20%

example cont'd

1

1
1 1

−10

−10
−10 −10

In state (3), any action gets reward +1

(state, action) pair can get Mario rewards:

Any other (state, action) pairs get reward 0

In state (6), any action gets reward -10

actions: {Up ↑, Down ↓,
Left ←, Right →}

goal is to find a gameplay policy strategy for Mario, to get
maximum expected sum of discounted rewards, with a discount
facotor γ = 0.9

0 0

000

00

0

0

0 0

−900

00

1.9

−9.28

0 0

000

00

1

−10

V (s)π
0 V (s)π

1 V (s)π
2

Now, let's think about V (6)π
3

2

3

action ↑

action ↑

R(3, ↑)

R(2, ↑)γ2

γ2

γ2R(2, ↑)

R(3, ↑)γ2

6
action ↑

R(6, ↑)R(6, ↑)

Recall:

π(s) = ‘‘ ↑ ", ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

2

3

action ↑

action ↑

R(2, ↑)

R(3, ↑)

γ

γ

R(2, ↑)γ

R(3, ↑)γ

20%20%

80%80%

1 2

987

54

3

6

80%
20%

V (6) =π
3 R(6, ↑) R(2, ↑)γ γ2 R(2, ↑)20% [+ +] R(3, ↑)γ R(3, ↑)γ280% [+ +]

+ R(2, ↑)γ γ R(2, ↑)20% [+]R(6, ↑)= R(3, ↑)γ R(3, ↑)80% [+ +]γ

R(6, ↑)= γ20%+ V (2)π
2 γ80%+ V (3)π

2

π(s) V (s)π
h

MDP
Policy evaluation

finite-horizon policy evaluation infinite-horizon policy evaluation

 is now necessarily <1 for convergence too in general γ

Bellman equation

 many linear equations∣S∣

For any given policy the infinite-horizon

(state) value functions are

π(s),

V (s) :=π E γ R s ,π s ∣ s = s,π , ∀s[∑t=0
∞ t (t (t)) 0]

V (s) =π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ (′) π (′)

For a given policy the finite-horizon horizon-

(state) value functions are:

π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s[∑t=0

h−1 t (t (t)) 0]

Bellman recursion

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ (′) π
h−1 (′)

Recall:

1 2

987

54

3

6

80%
20%

example: recursively finding Q (s, a)h
γ = 0.9

 is the expected sum of discounted rewards forQ (s, a)h

1

1
1 1

−10

−10

−10
−10Q (s, a)0

0 00

0 00

0 00

0 00

0 00

0 000 000 000 00

0 00

0 000 0 0

0 000 0 0

0 000 0 0

States and
one special
transition:

R(s, a)

0 0

0 0

0 1

0 −100

0 0

0 000 00 00 0

0 00

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a)1

−10

1

−10
−10

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining steps(h− 1)

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (6, ↑2)

receive R(6, ↑)
act optimally for one more timestep,
at the next state s′

= R(6, ↑) + γ[.2max Q 2, a +a′
1 (′) .8max Q 3, a]a′

1 (′)

0

0

0

0

1.9
1.9

1
−8

20% chance, = 2, act optimally,
receive

s′

max Q 2, aa′
1 (′)

80% chance, = 3, act optimally,
receive

s′

max Q 3, aa′
1 (′)

−9.28

= −10 + .9[.2 ∗ 0 + .8 ∗ 1] = −9.28

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Q (6, ↑2) = R(6, ↑) + γ[.2max Q 2, a +a′
1 (′) .8max Q 3, a]a′

1 (′)

0

0

0

0

1.9
1.9

1
−8

−9.28

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a , ∀s, a∑s′ (′) a′
h−1 (′ ′)

= R(s, a)

in general

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

0

0

0

0

1.9
1.9

1
−8

−9.28

π (s) =h
∗ argmax Q (s, a), ∀s,ha

h

what's the optimal action in state 3, with horizon 2, given by

π (3) =2
∗ ?

in general

either up or right

Given the finite horizon recursion

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ (′ ′)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′
h−1 (′ ′)

We should easily be convinced of the infinite horizon equation

Infinite-horizon Value Iteration

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

all transitions probabilities are unknown.

1 2

987

54

3

6

Running example: Mario in a grid-world
(the Reinforcement-Learning Setup)

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}
???

…

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

(state, action) pair gets Mario unknown rewards.

goal is to find a gameplay policy strategy for Mario, to get
maximum expected sum of discounted rewards, with a discount
facotor γ = 0.9

MDP Definition and Goal
 : state space, contains all possible states .
 : action space, contains all possible actions .

 : the probability of transition from state to when
action is taken.

 : a function that takes in the (state, action) and returns
a reward.

: discount factor, a scalar.

S s

A a

T s, a, s(′) s s′

a

R(s, a)

γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π

RL

RL:

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

Model-Based Methods
Keep playing the game to approximate the unknown rewards and transitions.

e.g. by observing what reward received from being in state 6 and take action, we
know

r ↑
R(6, ↑)

Transitions are a bit more involved but still simple:

Rewards are particularly easy:

 e.g. play the game 1000 times, count the # of times (we started in state 6, take
action, end in state 2), then, roughly,

↑
T(6, ↑, 2) = (that count/1000)

(MDP)-

Now, with estimated, we're back in MDP setting.R,T

(for solving RL)

In Reinforcement Learning:

Model typically means MDP tuple
The learning objective is not referred to as hypothesis explicitly, we simply just
call it the policy.

⟨S,A, T,R, γ⟩

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

How do we learn a good policy without learning transition or rewards explicitly?

We kinda already know a way: Q functions!

So once we have "good" Q values, we can find optimal policy easily.

(Recall from MDP lab)

But didn't we calculate this Q-table via value iteration using transition and rewards explicitly?

Indeed, recall that, in MDP:

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ (′ ′)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′
h−1 (′ ′)

Infinite horizon equation

Infinite-horizon Value Iteration

Finite horizon recursion

old belief

+ γ Q s , a
a′
max old (′ ′)

Q (s, a) ←new R(s, a) + γ T s, a, s Q s , a
s′

∑ (′)
a′
max old (′ ′)

value iteration relied on having full access to and R T

BUT, this is basically saying the realized is the only possible next state; pretty rough!
We'd override any previous "learned" Q values.

s′

hmm... perhaps, we could simulate , observe and , and just use(s, a) r s′

r

better way is to smoothly keep track of what's our old belief with new evidence:

Q (6, ↑new) ← −10 + γ Q 2, a
a′
max old (′) Q (6, ↑new) ← −10 + γ Q 3, a

a′
max old (′)e.g.

as the proxy for the r.h.s. assignment?

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

targetlearning rate

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

VALUE-ITERATION (S,A, T,R, γ, ϵ) Q-LEARNING S,A, γ, s ,α(0)

1. for :
2.
3.
4. while True:
5. select_action
6.
7.

8.
9. if

10. return
11.

s ∈ S, a ∈ A

Q (s, a) =old 0

s← s0

a← s,Q (s, a)(old)

r, s =′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old

α r + γmax Q (s , a)(a′ old
′ ′)

s← s′

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

"calculating" "estimating"

Q (s, a) ←new Q (s, a) +old α [r + γmax Q (s , a)] − Q (s, a)(a′ old
′ ′

old)

Q-LEARNING S,A, γ, s ,α(0)

1. for :
2.
3.
4. while True:
5. select_action
6.
7.

8.
9. if

10. return
11.

s ∈ S, a ∈ A

Q (s, a) =old 0

s← s0

a← s,Q (s, a)(old)

r, s =′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old

α r + γmax Q (s , a)(a′ old
′ ′)

s← s′

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Remarkably, still can converge. (So long
 are finite; we visit every state and

action infinity-many times; and decays.
S,A

α

Line 7 :

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

is equivalently:

old belieftargetlearning
rate

old belief + −()

Line 5, a sub-routine.

pretty similar to SGD.

-greedy action selection strategy:
with probability , choose
with probability , choose an action uniformly at random

ϵ

1 − ϵ argmax Q(s, a)a

ϵ a ∈ A

If our values are estimated quite accurately (nearly converged to the true
values), then should act greedily

 as we did in MDP.

Q Q

argmax Q (s, a),a
h

During learning, especially in early stages, we'd like to explore.

Benefit: get to observe more diverse (s,a) consequences.

exploration vs. exploitation.

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

Q-learning only is kinda sensible for tabular setting.

Can be interpreted as we're minimizing:

Q(s, a) − r + γmax Q s , a((a′ (′ ′)))2

via gradient method!

What do we do if and/or are large (or continuous)?S A

Recall from Q-learning algorithm, key line 7 :
Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(

a′
max old (′ ′))

Q (s, a) ←new Q (s, a) +old α [r + γmax Q (s , a)] − Q (s, a)(a′ old
′ ′

old)

is equivalently:

old belieftargetlearning
rate

old belief + −()

Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ

Supervised learning

If no direct supervision is available?
Strictly RL setting. Interact, observe and get data. Use rewards/value as "coy"
supervision signal.

Thanks!

We'd appreciate your on the lecture.

feedback

https://docs.google.com/forms/d/e/1FAIpQLSe_lTgv0hIuYw420V02jBBaSSAK_8HSFqsdZ5MmTmFJbKaaOQ/viewform?usp=sf_link

