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Outline
Recap: Markov Decision Processes
Reinforcement Learning Setup

What's changed from MDP?

Model-based methods
Model-free methods

(tabular) Q-learning

-greedy action selection
exploration vs. exploitation

(neural network) Q-learning

RL setup again

What's changed from supervised learning?

ϵ



MDP Definition and Goal
 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

 : the probability of transition from state  to  when
action  is taken.
T s, a, s( ′) s s′

a

 : a function that takes in the (state, action) and returns
a reward.
R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π



State s

Action a

Reward r

…
Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

a trajectory (aka an experience or rollout) τ = s , a , r , s , a , r ,…( 0 0 0 1 1 1 )

r =0
R(s , a )0 0

r =1
R(s , a )1 1

r =2
R(s , a )2 2

r =4
R(s , a )4 4

r =5
R(s , a )5 5

r =6
R(s , a )6 6

r =7
R(s , a )7 7

…
r =3

R(s , a )3 3

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 γ R(s , a )4
4 4 γ R(s , a )5

5 5 γ R(s , a )6
6 6 γ R(s , a )7

7 7 …+ + + + + + +

time

how "good" is a trajectory?



almost all transitions are deterministic:

Normally, actions take Mario to the “intended” state.

E.g., in state (7), action “↑” gets to state (4)

If an action would've taken us out of this world, stay put

E.g., in state (9), action “→” gets back to state (9)

except, in state (6), action “↑” leads to two possibilities:

20% chance ends in (2)

80% chance ends in (3)
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Running example: Mario in a grid-world 

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}
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example cont'd

1

1
1 1

−10

−10
−10 −10

In state (3), any action gets reward +1

(state, action) pair can get Mario rewards:

Any other (state, action) pairs get reward 0

In state (6), any action gets reward -10

actions: {Up ↑, Down ↓,
Left ←, Right →}

goal is to find a gameplay policy strategy for Mario, to get
maximum expected sum of discounted rewards, with a discount
facotor   γ = 0.9
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V (s)π
0 V (s)π

1 V (s)π
2

Now, let's think about V (6)π
3

2

3

action ↑

action ↑

R(3, ↑)

R(2, ↑)γ2

γ2

γ2R(2, ↑)

R(3, ↑)γ2

6
action ↑

R(6, ↑)R(6, ↑)

Recall:
 
 
 
 
 
 
π(s) =  ‘‘ ↑ ",   ∀s

R(3, ↑) = 1

R(6, ↑) = −10

γ = 0.9

2

3

action ↑

action ↑

R(2, ↑)

R(3, ↑)

γ

γ

R(2, ↑)γ

R(3, ↑)γ

20%20%

80%80%
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V (6) =π
3 R(6, ↑) R(2, ↑)γ γ2 R(2, ↑)20% [+ + ] R(3, ↑)γ R(3, ↑)γ280% [+ + ]

+ R(2, ↑)γ γ R(2, ↑)20% [ + ]R(6, ↑)= R(3, ↑)γ R(3, ↑)80% [+ + ]γ

R(6, ↑)= γ20%+ V (2)π
2 γ80%+ V (3)π

2

π(s) V (s)π
h

MDP
Policy evaluation



finite-horizon policy evaluation  infinite-horizon policy evaluation

 is now necessarily <1 for convergence too in general γ

Bellman equation

 many linear equations∣S∣

For any given policy  the infinite-horizon

(state) value functions are

π(s),

V (s) :=π E γ R s ,π s ∣ s = s,π , ∀s[∑t=0
∞ t ( t ( t)) 0 ]

V (s) =π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ ( ′) π ( ′)

For a given policy  the finite-horizon horizon-

(state) value functions are:

π(s), h

V (s) :=π
h E γ R s ,π s ∣ s = s,π , ∀s[∑t=0

h−1 t ( t ( t)) 0 ]

Bellman recursion

V (s) =π
h R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ ( ′) π
h−1 ( ′)



Recall:
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example: recursively finding Q (s, a)h
γ = 0.9

 is the expected sum of discounted rewards forQ (s, a)h

1

1
1 1

−10

−10

−10
−10Q (s, a)0

0 00

0 00

0 00

0 00

0 00

0 000 000 000 00

0 00

0 000 0 0

0 000 0 0

0 000 0 0

States and
one special
transition:

R(s, a)

0 0

0 0

0 1

0 −100

0 0

0 000 00 00 0

0 00

0 000 1
1

0 000

0 000

0 000 0 0

Q (s, a)1

−10

1

−10
−10

starting in state ,s
take action , for one stepa

act optimally there afterwards for the remaining  steps(h− 1)



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0
0

000 1
1

000

0 000

0

000 0 0

Q (s, a) =1 R(s, a)

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Let's consider Q (6, ↑2 )

receive R(6, ↑)
act optimally for one more timestep,
at the next state  s′

= R(6, ↑)  + γ[.2max Q 2, a +a′
1 ( ′) .8max Q 3, a ]a′

1 ( ′)

0

0

0

0

1.9
1.9

1
−8

20% chance,  = 2, act optimally,
receive 

s′

max Q 2, aa′
1 ( ′)

80% chance,  = 3, act optimally,
receive 

s′

max Q 3, aa′
1 ( ′)

−9.28

= −10 + .9[.2 ∗ 0 + .8 ∗ 1] = −9.28



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

Q (6, ↑2 ) = R(6, ↑)  + γ[.2max Q 2, a +a′
1 ( ′) .8max Q 3, a ]a′

1 ( ′)

0

0

0

0

1.9
1.9

1
−8

−9.28

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a , ∀s, a∑s′ ( ′) a′
h−1 ( ′ ′)

= R(s, a)

in general 



Recall:
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γ = 0.9 is the expected sum of discounted rewards forQ (s, a)h

starting in state ,
take action , for one step
act optimally there afterwards for the
remaining  steps

s

a

(h− 1)

0

0

0 1

0 −10

0

0 00 00 00 0

0 0

0

000 1
1

000

0 000

0

000 0 0

Q (s, a)1

States and
one special
transition:

−10

1

−10
−10

0

0

Q (s, a)2

0

0

0

0

1.9
1.9

1
−8

−9.28

π (s) =h
∗ argmax Q (s, a), ∀s,ha

h

what's the optimal action in state 3, with horizon 2, given by 
 

π (3) =2
∗ ?

in general 

either up or right 



Given the finite horizon recursion

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ ( ′ ′)

1. for   :
2.       
3. while True:
4.       for   :
5.             
6.       if 
7.             return 
8.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s ∈ S, a ∈ A

Q (s, a) ←new  R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ old  ( ′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′
h−1 ( ′ ′)

We should easily be convinced of the infinite horizon equation

Infinite-horizon Value Iteration
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all transitions probabilities are unknown.
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Running example: Mario in a grid-world
(the Reinforcement-Learning Setup)

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}
???

…

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

?

?
? ?

(state, action) pair gets Mario unknown rewards.

goal is to find a gameplay policy strategy for Mario, to get
maximum expected sum of discounted rewards, with a discount
facotor   γ = 0.9



MDP Definition and Goal
 : state space, contains all possible states .
 : action space, contains all possible actions .

 : the probability of transition from state  to  when
action  is taken.

 : a function that takes in the (state, action) and returns
a reward.

: discount factor, a scalar.

S s

A a

T s, a, s( ′) s s′

a

R(s, a)

γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

Ultimate goal of an MDP: Find the "best" policy .π

RL

RL:
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Model-Based Methods
Keep playing the game to approximate the unknown rewards and transitions.

e.g. by observing what reward  received from being in state 6 and take  action, we
know 

r ↑
R(6, ↑)

Transitions are a bit more involved but still simple:

Rewards are particularly easy:

     e.g. play the game 1000 times, count the # of times (we started in state 6, take 
action, end in state 2), then, roughly, 

↑
T(6, ↑, 2) = (that count/1000)

(MDP)-

Now, with  estimated, we're back in MDP setting.R,T

(for solving RL)

In Reinforcement Learning:

Model typically means MDP tuple 
The learning objective is not referred to as hypothesis explicitly, we simply just
call it the policy.

⟨S,A, T,R, γ⟩
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How do we learn a good policy without learning transition or rewards explicitly? 

We kinda already know a way: Q functions!

So once we have "good" Q values, we can find optimal policy easily. 

(Recall from MDP lab)

But didn't we calculate this Q-table via value iteration using transition and rewards explicitly?



Indeed, recall that, in MDP:

Q(s, a) = R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ ( ′ ′)

1. for   :
2.       
3. while True:
4.       for   :
5.             
6.       if 
7.             return 
8.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s ∈ S, a ∈ A

Q (s, a) ←new  R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ old  ( ′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

Q (s, a) =h R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′
h−1 ( ′ ′)

Infinite horizon equation

Infinite-horizon Value Iteration

Finite horizon recursion



old belief

+ γ Q s , a
a′
max old  ( ′ ′)

Q (s, a) ←new  R(s, a) + γ T s, a, s Q s , a
s′

∑ ( ′)
a′
max old  ( ′ ′)

value iteration relied on having full access to  and R T

BUT, this is basically saying the realized  is the only possible next state; pretty rough!
We'd override any previous "learned" Q values.

s′

hmm... perhaps, we could simulate , observe  and , and just use(s, a) r s′

r

better way is to smoothly keep track of what's our old belief with new evidence:

Q (6, ↑new  ) ← −10 + γ Q 2, a
a′
max old  ( ′) Q (6, ↑new  ) ← −10 + γ Q 3, a

a′
max old  ( ′)e.g.

as the proxy for the r.h.s. assignment?

Q (s, a) ←new  (1 − α)Q (s, a) +old  α r + γ Q s , a(
a′
max old  ( ′ ′))

targetlearning rate



 

1. for   :
2.       
3. while True:
4.       for   :
5.             
6.       if 
7.             return 
8.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s ∈ S, a ∈ A

Q (s, a) ←new  R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ old  ( ′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

VALUE-ITERATION (S,A, T,R, γ, ϵ) Q-LEARNING S,A, γ, s ,α( 0 )

 

1. for   :
2.       
3. 
4. while True: 
5.        select_action 
6.       
7.       

8.       
9.       if 

10.             return 
11.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s← s0

a← s,Q (s, a)( old )

r, s =′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old 

α r + γmax Q (s , a )( a′ old
′ ′ )

s← s′

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

"calculating" "estimating"



Q (s, a) ←new Q (s, a) +old  α [r + γmax Q (s , a )] − Q (s, a)( a′ old
′ ′

old  )

Q-LEARNING S,A, γ, s ,α( 0 )

 

1. for   :
2.       
3. 
4. while True: 
5.        select_action 
6.       
7.       

8.       
9.       if 

10.             return 
11.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s← s0

a← s,Q (s, a)( old )

r, s =′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old 

α r + γmax Q (s , a )( a′ old
′ ′ )

s← s′

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

Remarkably, still can converge. (So long 
 are finite; we visit every state and

action infinity-many times; and  decays.
S,A

α

Line 7 :

Q (s, a) ←new  (1 − α)Q (s, a) +old  α r + γ Q s , a(
a′
max old  ( ′ ′))

is equivalently:

old belieftargetlearning
rate

old belief + −( )

Line 5, a sub-routine.

pretty similar to SGD.



-greedy action selection strategy:
with probability , choose 
with probability , choose an action  uniformly at random

ϵ

1 − ϵ argmax Q(s, a)a

ϵ a ∈ A

If our  values are estimated quite accurately (nearly converged to the true 
values), then should act greedily

 as we did in MDP.

Q Q

argmax Q (s, a),a
h

During learning, especially in early stages, we'd like to explore.

Benefit: get to observe more diverse (s,a) consequences.

exploration vs. exploitation.
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Q-learning only is kinda sensible for tabular setting. 

Can be interpreted as we're minimizing:

Q(s, a) − r + γmax Q s , a( ( a′ ( ′ ′)))2

via gradient method!

What do we do if  and/or  are large (or continuous)?S A

Recall from Q-learning algorithm, key line 7 :
Q (s, a) ←new  (1 − α)Q (s, a) +old  α r + γ Q s , a(

a′
max old  ( ′ ′))

Q (s, a) ←new Q (s, a) +old  α [r + γmax Q (s , a )] − Q (s, a)( a′ old
′ ′

old  )

is equivalently:

old belieftargetlearning
rate

old belief + −( )
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Supervised learning





If no direct supervision is available?
Strictly RL setting. Interact, observe and get data. Use rewards/value as "coy"
supervision signal.



Thanks!

We'd appreciate your  on the lecture.
 

feedback

https://docs.google.com/forms/d/e/1FAIpQLSe_lTgv0hIuYw420V02jBBaSSAK_8HSFqsdZ5MmTmFJbKaaOQ/viewform?usp=sf_link

