

https://introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 12: Unsupervised Learning

Shen Shen May 3, 2024

(many slides adapted from Phillip Isola and Tamara Broderick)

Logistics

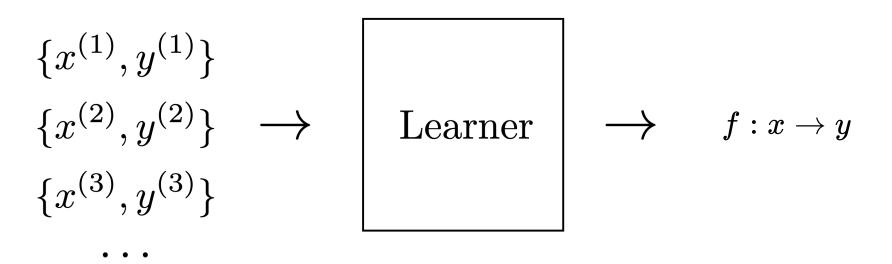
- This is the last regular lecture; next week is the last regular week.
- Friday, May 10
 - Lecture time, discuss future topics (generativeAI).
 - By the end of the day, all assignments will be due.
- Tuesday, May 14
 - 20-day extensions applicable through this day.
 - Last regular OHs (for checkoffs/hw etc); afterwards only Instructor OHs.
 - 6-8pm, 10-250, final exam review.
- The end-of-term subject evaluations are open. We'd love to hear your thoughts on
 6.390: this provides valuable feedback for us and other students, for future semesters!
- Check out final exam logistics on introML homepage.

Outline

- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

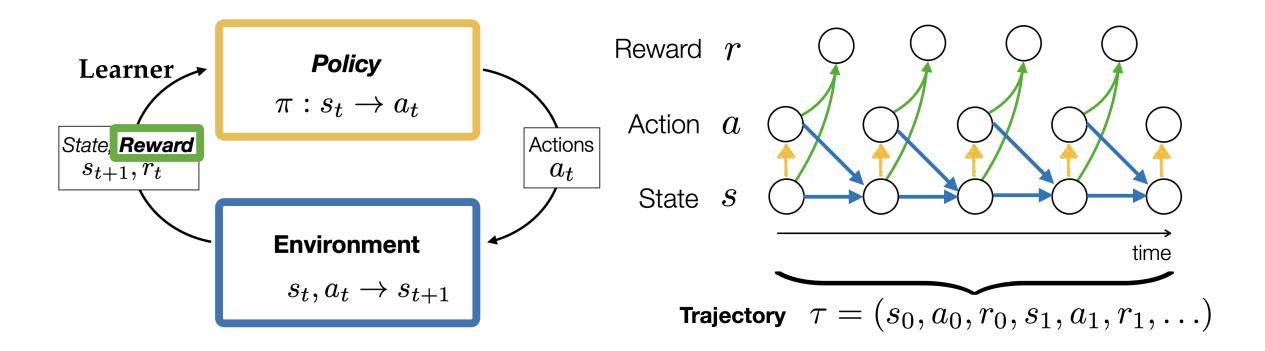
Supervised learning

Training data



- **explicit** supervision via labels *y*.
- both regression or classification are trying to predict accurate, exact labels.

Reinforcement learning



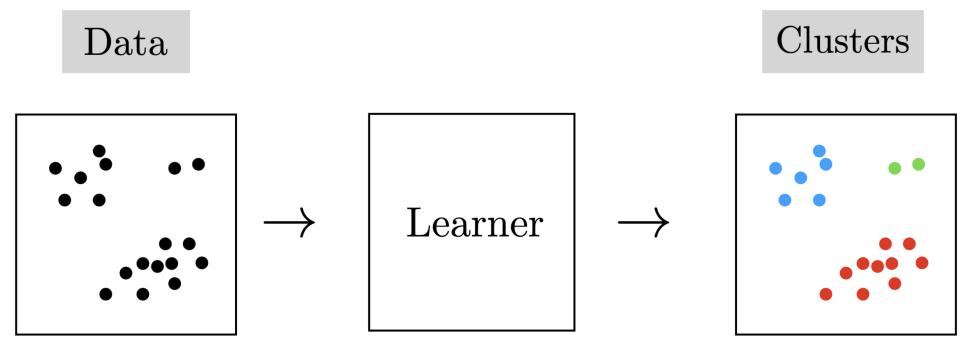
• implicit(evaluative), sequential, iterative supervision via rewards.

Outline

- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

Unsupervised learning

- No supervision, i.e., no labels nor rewards.
- try to learn something "interesting" using **only** the features
 - Clustering: learn "similarity" of the
 - Autoencoder: learn compression/reconstruction/representation
- useful paradigm on its own; often empowers downstream tasks.

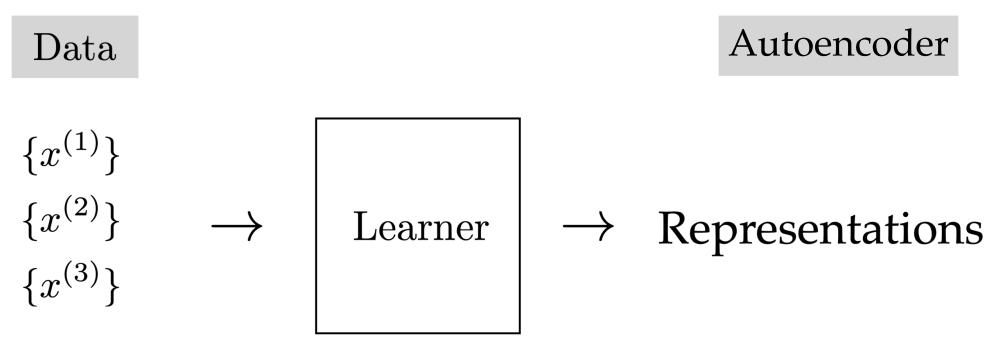


 $f: \mathcal{X} \to \{1, \dots, k\}$

$${x^{(1)}}$$

 ${x^{(2)}}$
 ${x^{(3)}}$

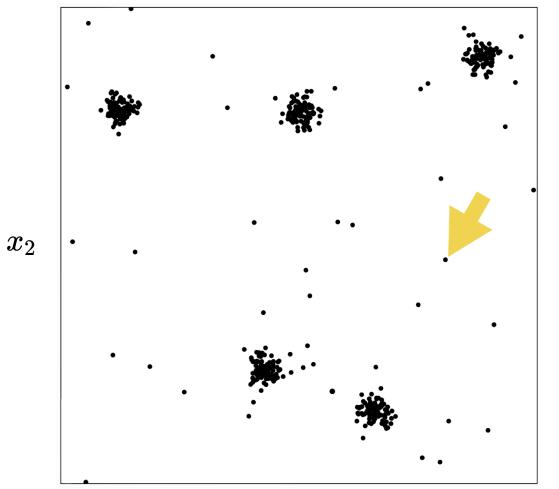
• • •



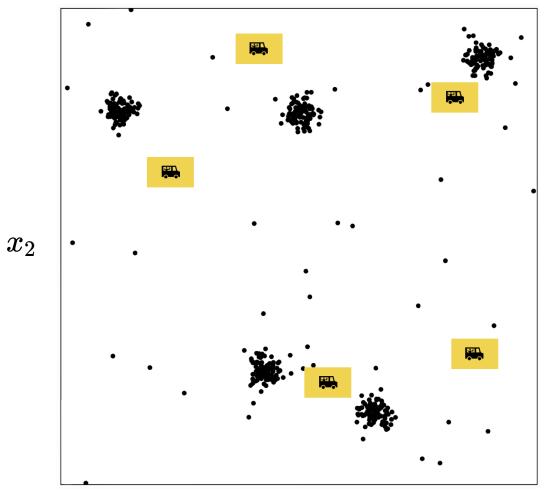
• • •

Outline

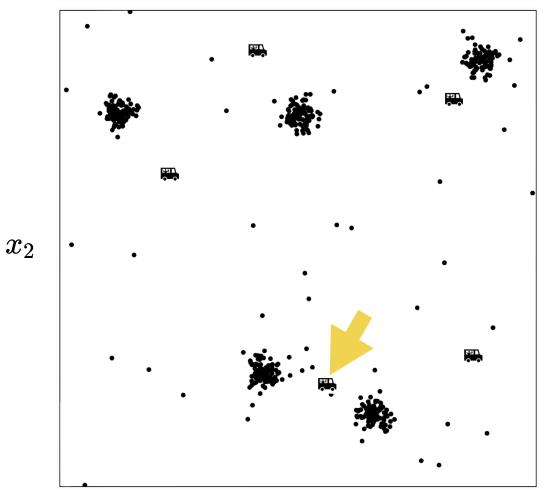
- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond



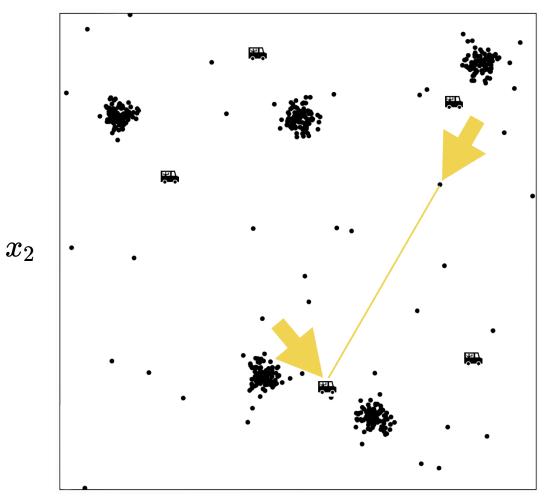
- *x*₁: longitude, *x*₂: latitude
- Person *i* location $x^{(i)}$



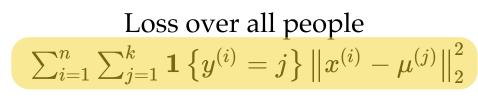
- *x*₁: longitude, *x*₂: latitude
- Person i location $x^{(i)}$
- Q: where should I have my *k* food trucks park?



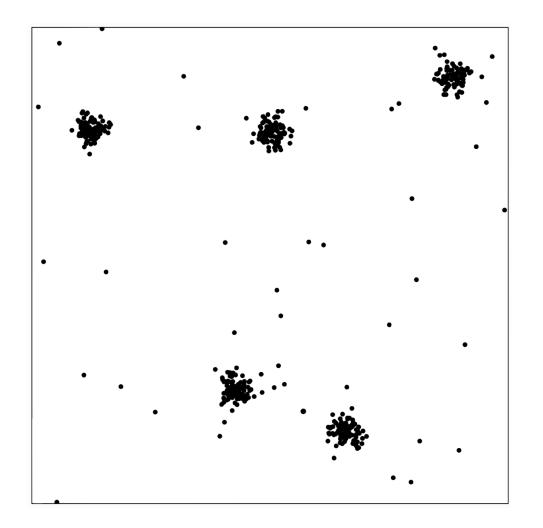
- *x*₁: longitude, *x*₂: latitude
- Person i location $x^{(i)}$
- Q: where should I have my *k* food trucks park?
- Food truck *j* location $\mu^{(j)}$
- Want to minimize the "loss" of people we serve



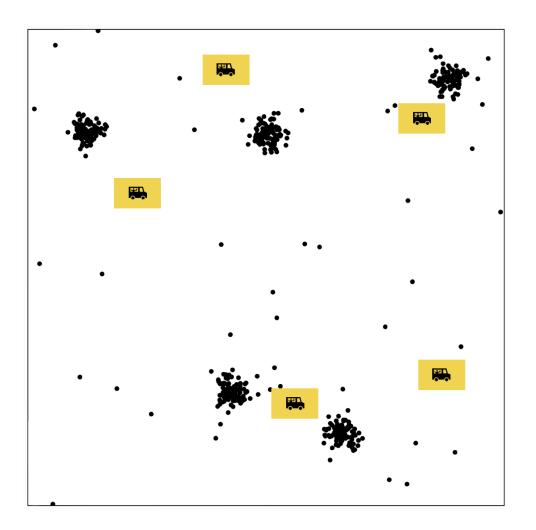
- *x*₁: longitude, *x*₂: latitude
- Person i location $x^{(i)}$
- Q: where should I have my *k* food trucks park?
- Food truck *j* location µ^(j)
 Want to minimize the "loss" of people we serve
- Loss if *i* walks to truck $j : \left\|x^{(i)} \mu^{(j)}\right\|_2^2$
- Index of the truck where person i is chosen to walk to: $y^{(i)}$



k-means objective

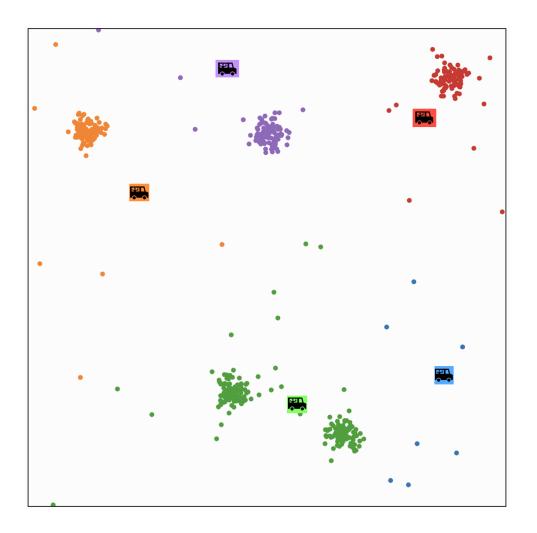


$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$



$\operatorname{K-MEANS}(k,\tau,\left\{x^{(i)}\right\}_{i=1}^n)$

1 μ random initialization



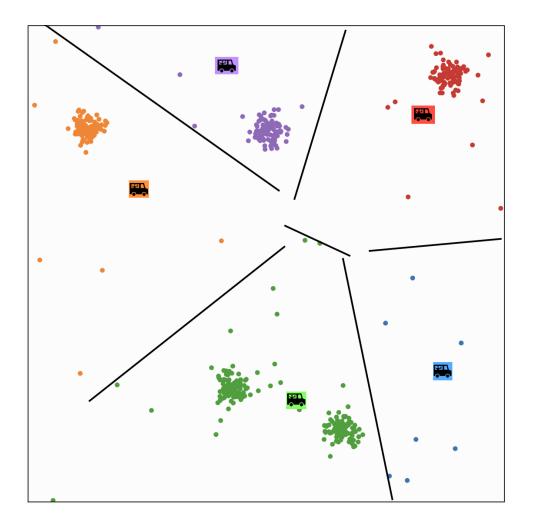
$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

- 1 μ random initialization
- 2 for t = 1 to τ

 $\mathbf{5}$

for
$$i = 1$$
 to n
 $y^{(i)} = rgmin_j \left\| x^{(i)} - \mu^{(j)} \right\|^2$

each person *i* gets assigned to a food truck *j*, color-coded.



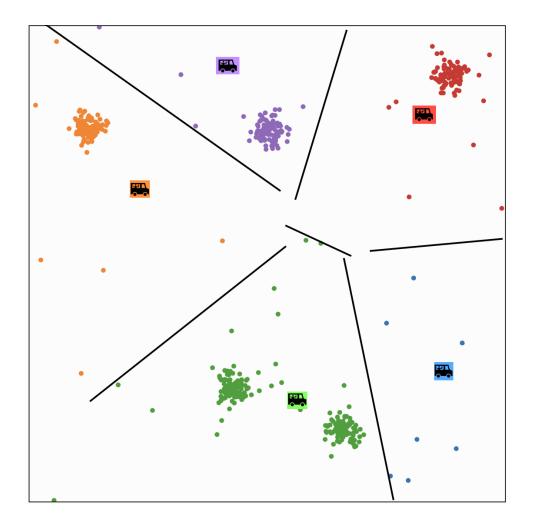
$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

- 1 μ random initialization
- 2 for t = 1 to τ

 $\mathbf{5}$

for
$$i = 1$$
 to n
 $y^{(i)} = rgmin_j \left\| x^{(i)} - \mu^{(j)} \right\|^2$

each person *i* gets assigned to a food truck *j*, color-coded.



$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

- 1 μ = random initialization
- 2 for t = 1 to τ

7

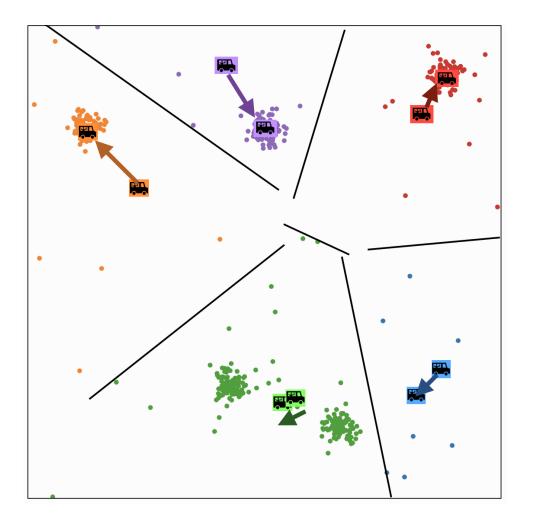
4 **for**
$$i = 1$$
 to n

$$5 \hspace{1.5cm} y^{(i)} = rgmin_{j} \left\Vert x^{(i)} - \mu^{(j)}
ight\Vert^{2}$$

for
$$j = 1$$
 to k

$$\mu^{(j)} = rac{1}{N_j} \sum_{i=1}^n 1\left(y^{(i)} = \mathfrak{j}
ight) x^{(i)}$$

food truck j gets moved to the "central" location of all ppl assigned to it $N_j = \sum_{i=1}^n \mathbf{1} \{ y^{(i)} = j \}$



$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

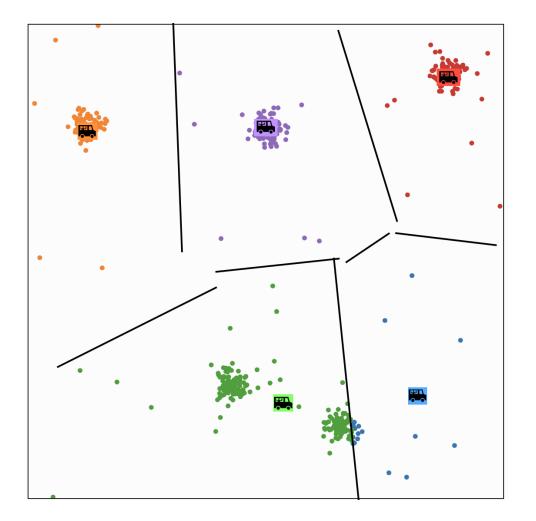
- μ = random initialization
- **for** t = 1 to τ

4 **for**
$$i = 1$$
 to n

$$5 \hspace{1.5cm} y^{(i)} = rgmin_{j} \left\Vert x^{(i)} - \mu^{(j)}
ight\Vert^{2}$$

for
$$j = 1$$
 to k

$$\mu^{(j)} = rac{1}{N_j} \sum_{i=1}^n 1\left(y^{(i)} = \mathfrak{j}
ight) x^{(i)}$$



$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

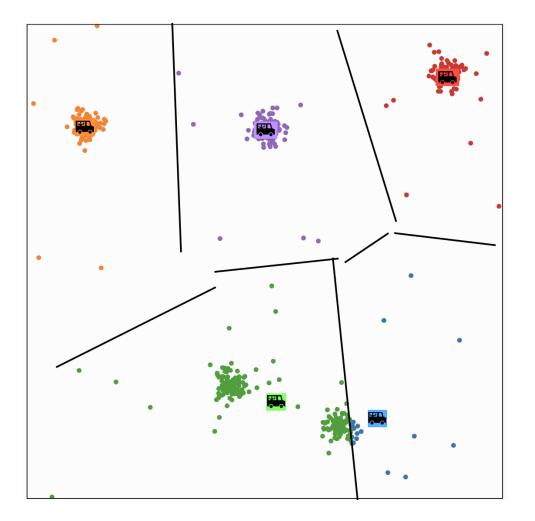
- μ = random initialization
- **for** t = 1 to τ

 $\mathbf{5}$

for
$$i=1$$
 to n $y^{(i)}=rgmin_{j}\left\|x^{(i)}-\mu^{(j)}
ight\|^{2}$

for
$$j = 1$$
 to k

$$\mu^{(j)} = rac{1}{N_j} \sum_{i=1}^n \mathbb{1} \left(y^{(i)} = \mathfrak{j}
ight) x^{(i)}$$

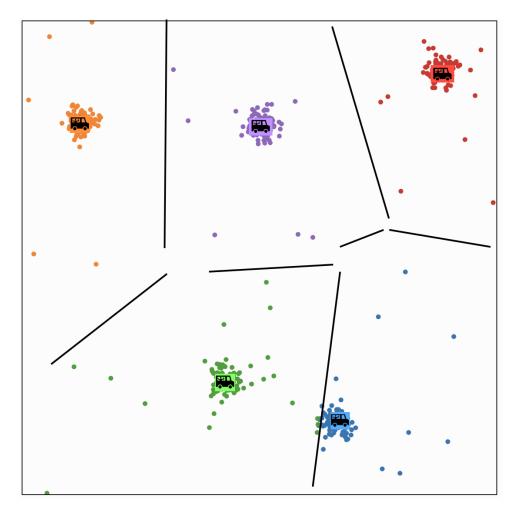


$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

- μ = random initialization
- **for** t = 1 to τ

 $\mathbf{5}$

for
$$i = 1$$
 to n
 $y^{(i)} = \arg \min_{j} ||x^{(i)} - \mu^{(j)}||^2$
for $j = 1$ to k
 $\mu^{(j)} = \frac{1}{N_j} \sum_{i=1}^n 1 (y^{(i)} = j) x^{(i)}$



$$ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$$

1 μ = random initialization

2 for t = 1 to τ

4

 $\mathbf{5}$

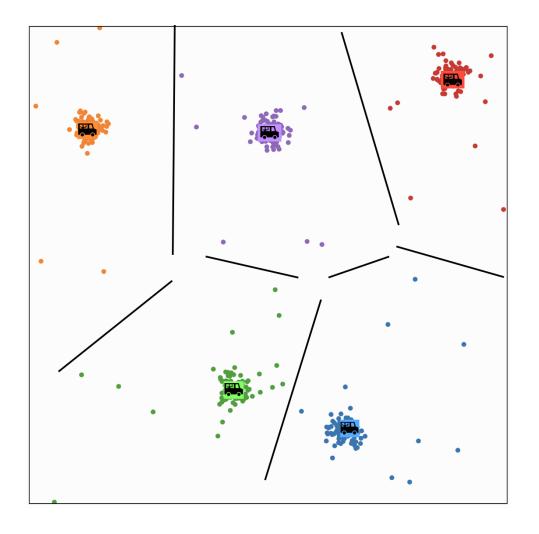
6

7

for
$$i = 1$$
 to n
 $y^{(i)} = \arg\min_j \left\|x^{(i)} - \mu^{(j)}\right\|^2$
for $j = 1$ to k

$$\mu^{(j)} = rac{1}{N_j} \sum_{i=1}^n 1\left(y^{(i)} = \mathfrak{j}
ight) x^{(i)}$$

continue (ppl assignment then truck movement) update at some point.

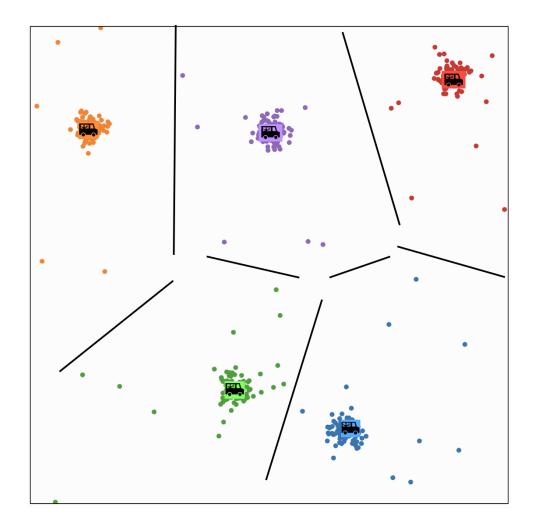


$$\operatorname{K-MEANS}(k,\tau,\left\{x^{(i)}\right\}_{i=1}^n)$$

- 1 μ = random initialization
- 2 for t = 1 to τ

4 for
$$i = 1$$
 to n
5 $y^{(i)} = \arg \min_{j} ||x^{(i)} - \mu^{(j)}||^{2}$
6 for $j = 1$ to k
7 $\mu^{(j)} = \frac{1}{N_{j}} \sum_{i=1}^{n} 1 (y^{(i)} = j) x^{(i)}$
8 if $y == y_{\text{old}}$
9 break

(ppl assignment and truck location) will stop changing



- $ext{K-MEANS}(k, au,ig\{x^{(i)}ig\}_{i=1}^n)$
- 1 μ , y = random initialization
- 2 for t = 1 to τ
- 3 $y_{old} = y$
- 4 **for** i = 1 to n
- $5 \hspace{1cm} y^{(i)} = rgmin_{j} \left\Vert x^{(i)} \mu^{(j)}
 ight\Vert^{2}$

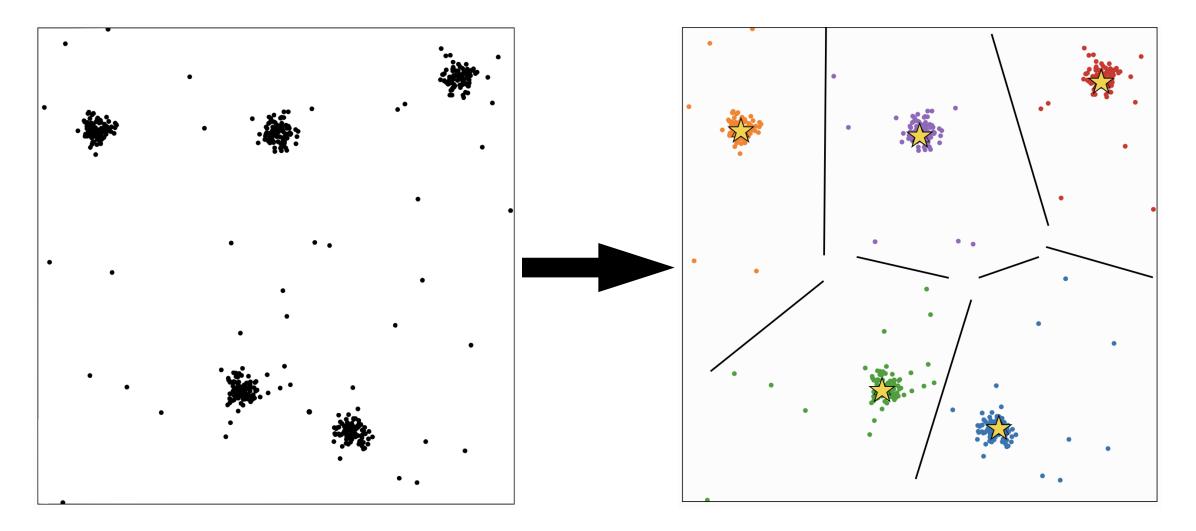
for
$$j = 1$$
 to k

- $\mu^{(j)} = rac{1}{N_j} \sum_{i=1}^n 1\left(y^{(i)} = \mathfrak{j}
 ight) x^{(i)}$
- 8 if $y == y_{\text{old}}$
- 9 break
- 10 return μ, y

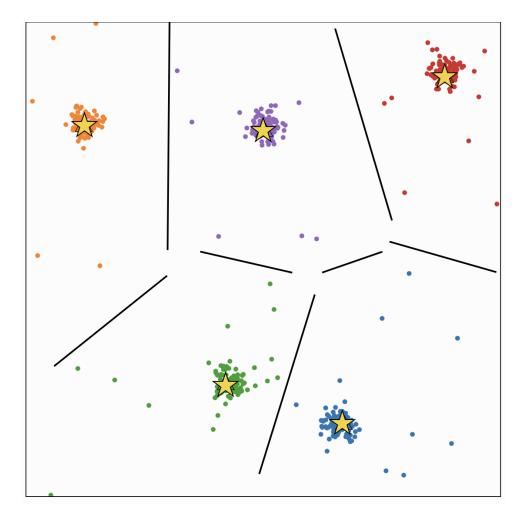
Outline

- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

k-means

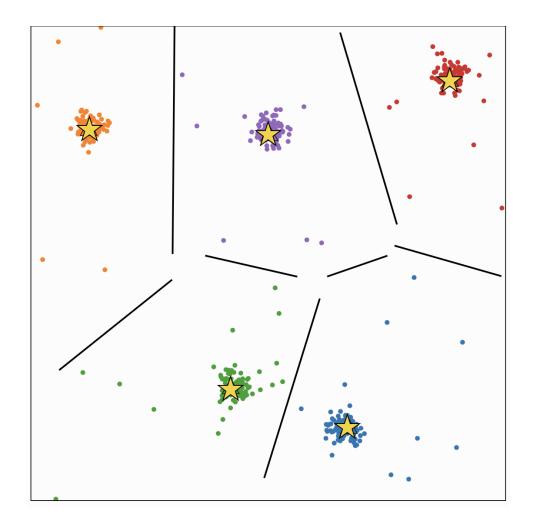


Compare to classification



- Did we just do *k*-class classification?
- Looks like we assigned label $y^{(i)}$, which takes k different values, to each feature vector $x^{(i)}$
- But we didn't use any **labeled** data
- The "labels" here don't have meaning; I could permute them and have the same result
- Output is really a partition of the data

Compare to classification

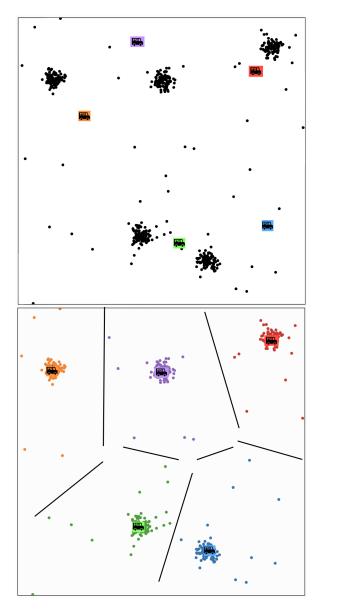


- So what did we do?
- We clustered the data: we grouped the data by similarity
- Why not just plot the data? We should! Whenever we can!
- But also: Precision, big data, high dimensions, high volume
- An example of unsupervised learning: no labeled data, and we're finding patterns

Outline

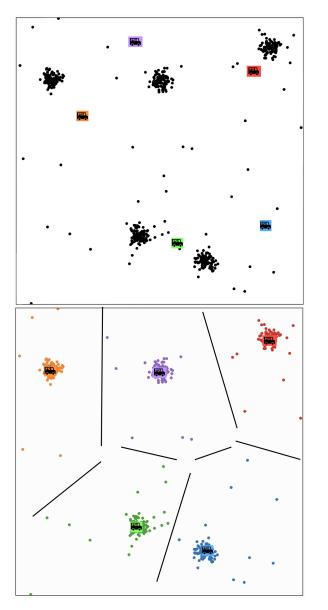
- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

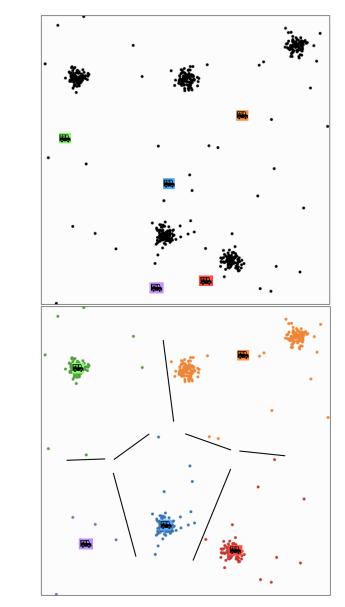
Effect of initialization

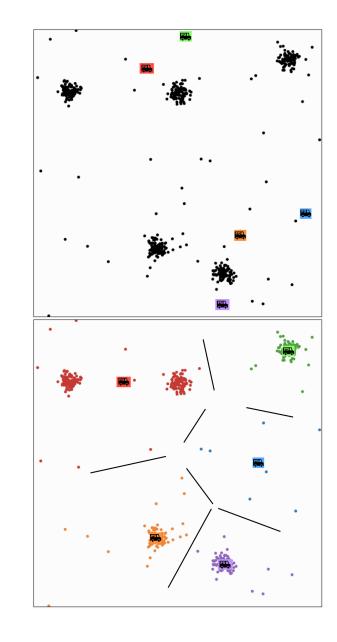


- A theorem say if run for enough outer iterations (line 2), the k-means algorithm will converge to a local minimum of the k-means objective
- That local minimum could be bad!
- The initialization can make a big difference.
- Some options: random restarts.

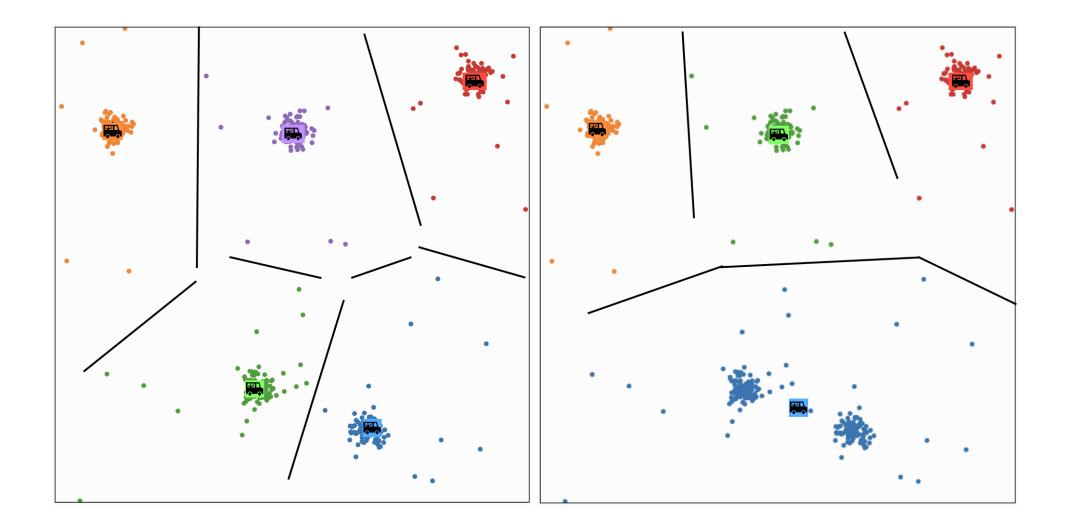
Effect of initialization







Effect of k

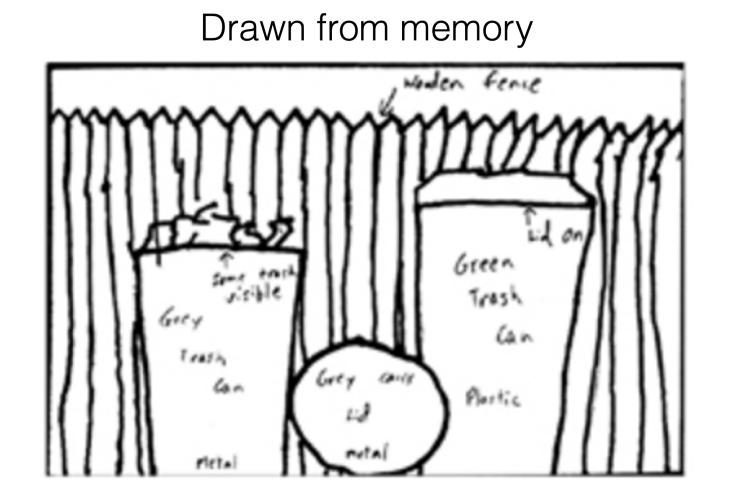


Outline

- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

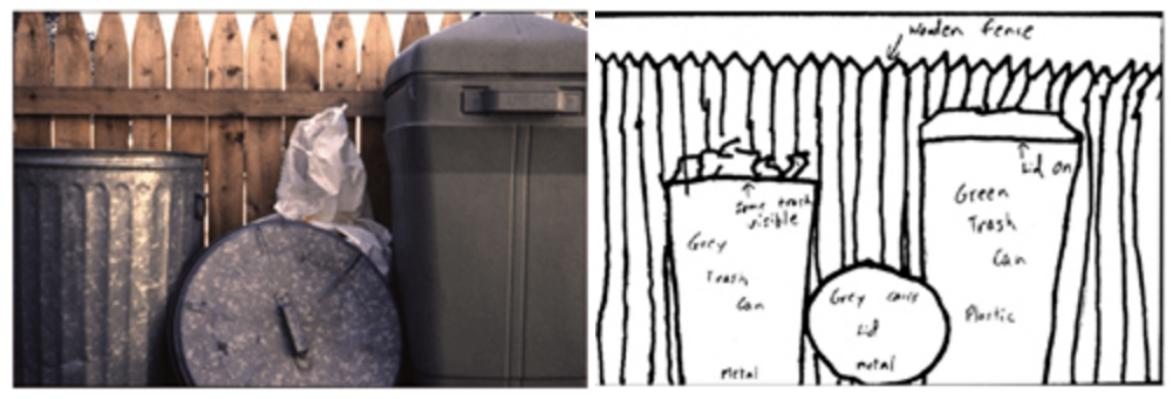
Observed image

[Bartlett, 1932] [Intraub & Richardson, 1989]



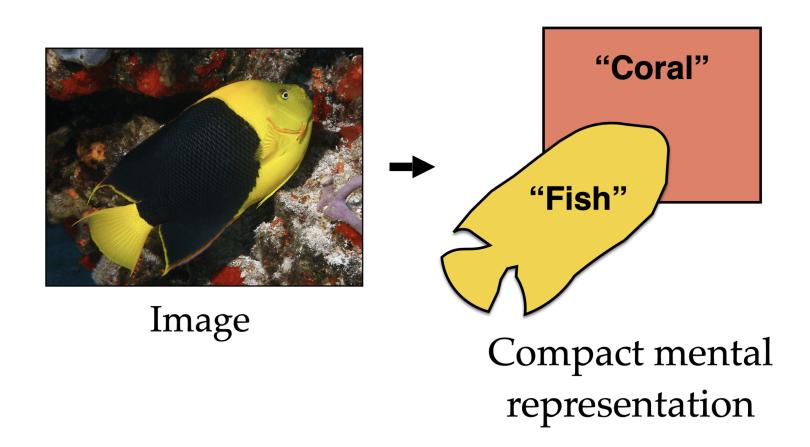
Observed image

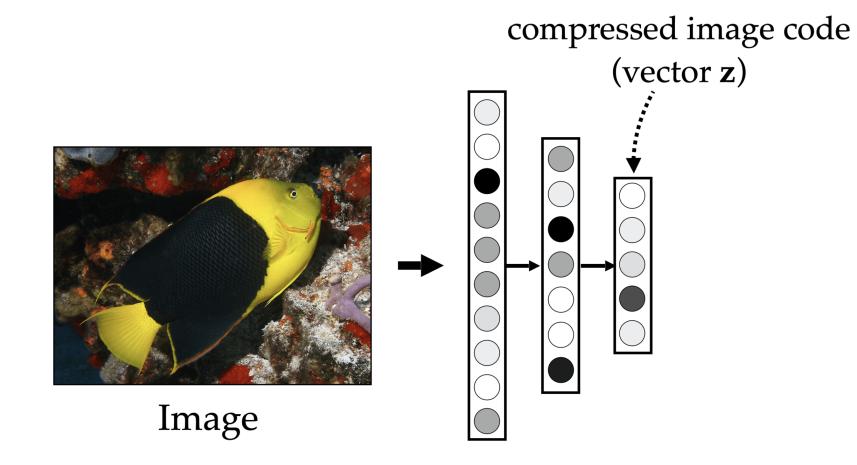
Drawn from memory

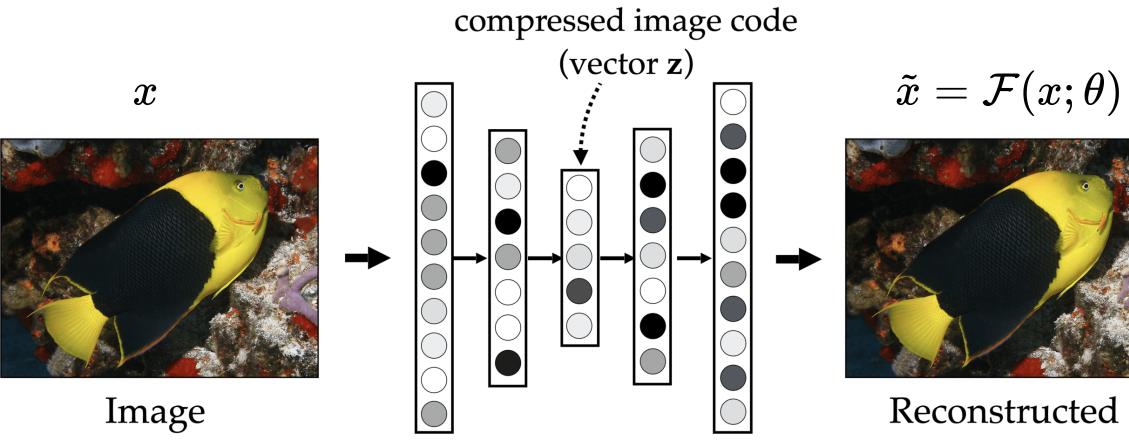


"I stand at the window and see a house, trees, sky. Theoretically I might say there were 327 brightnesses and nuances of colour. Do I have "327"? No. I have sky, house, and trees."

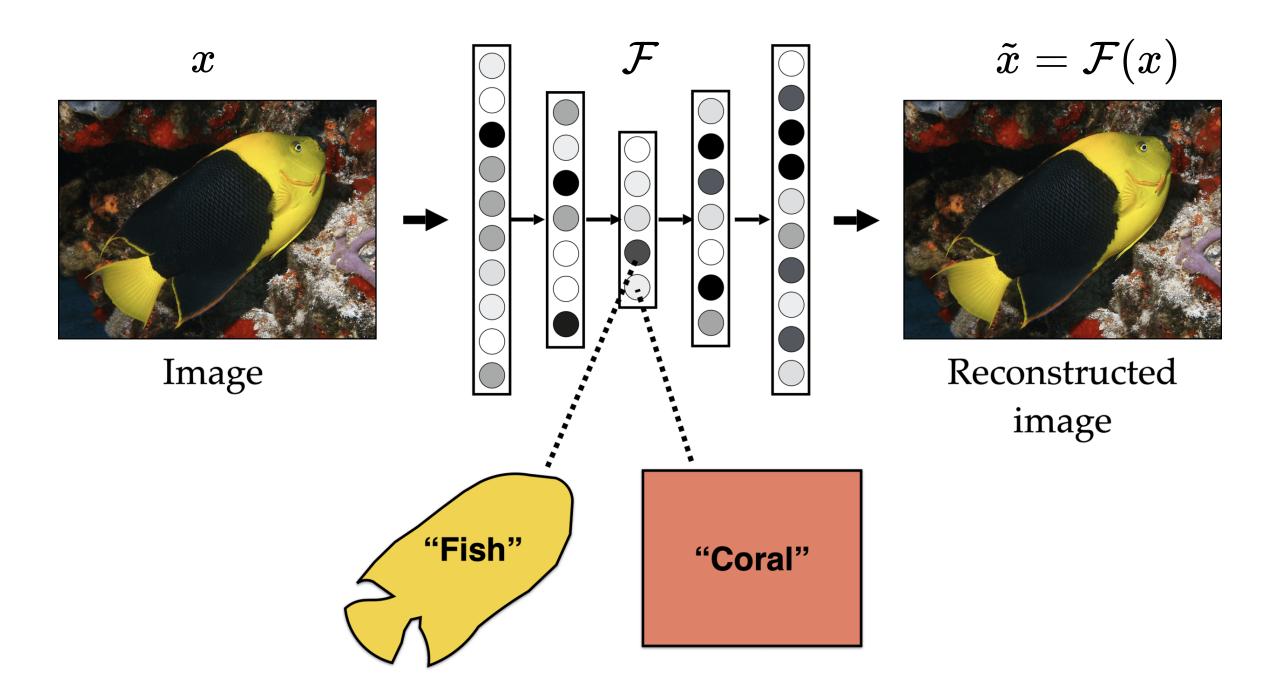
— Max Wertheimer, 1923

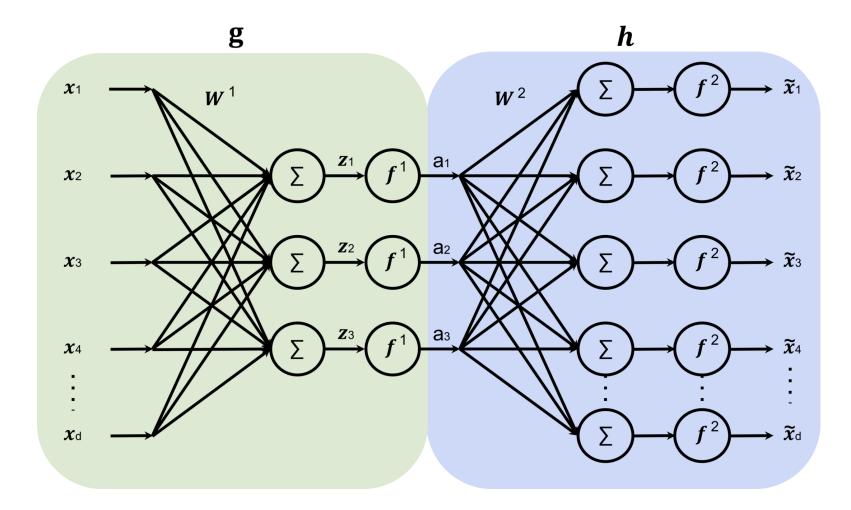




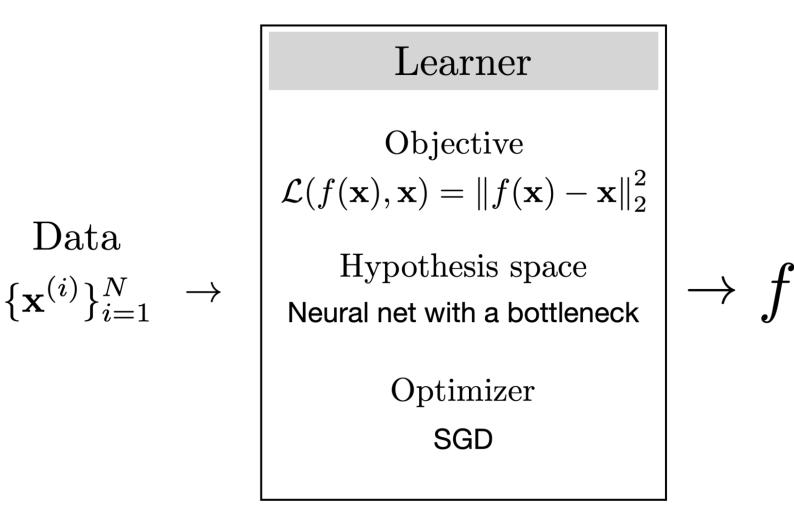


image





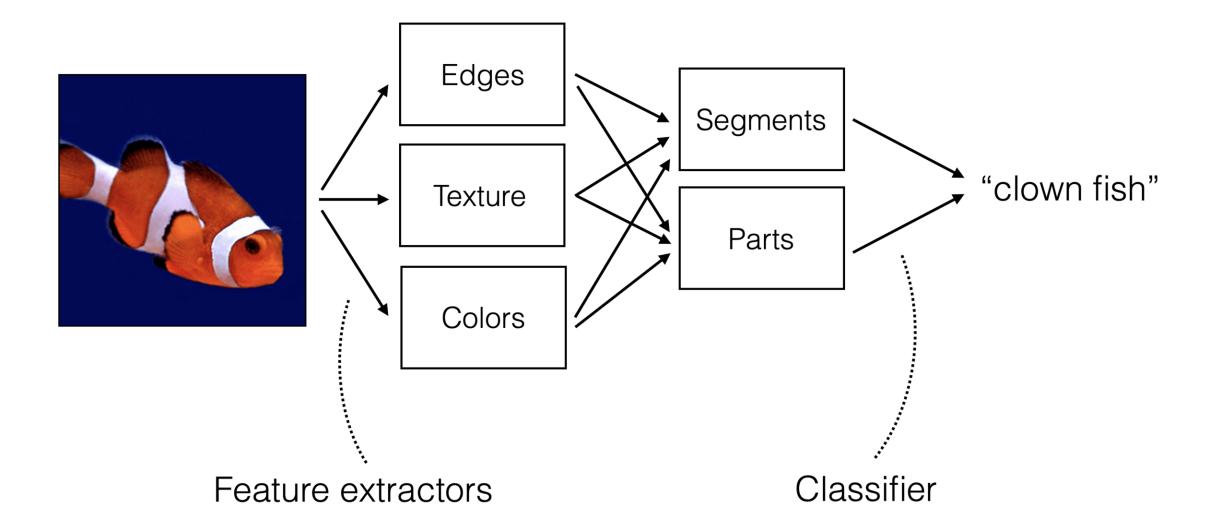
Autoencoder



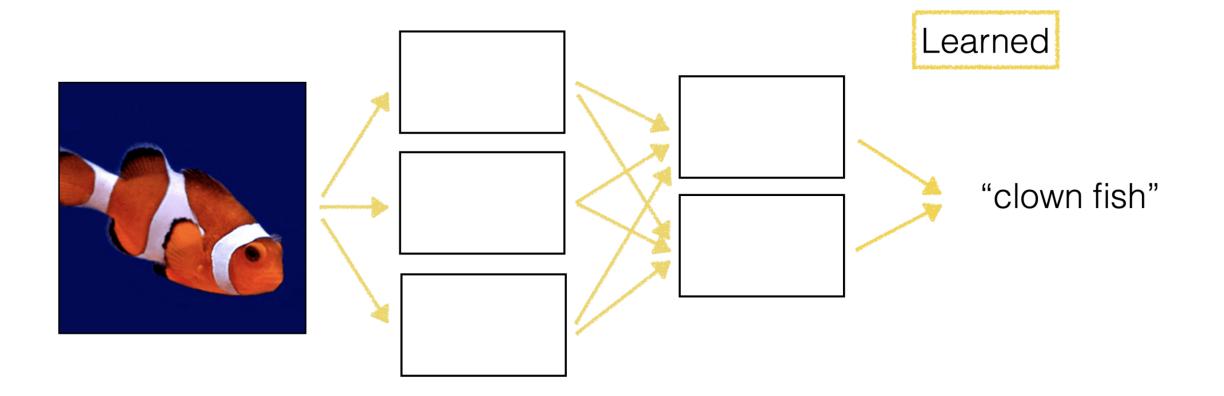
Outline

- Recap: Supervised learning and reinforcement learning
- Unsupervised learning
- Clustering: *k*-means algorithm
 - Clustering vs. classification
 - Initialization matters
 - *k* matters
- Auto-encoder
 - Compact representation
- Unsupervised learning again -- representation learning and beyond

Classical object recognition

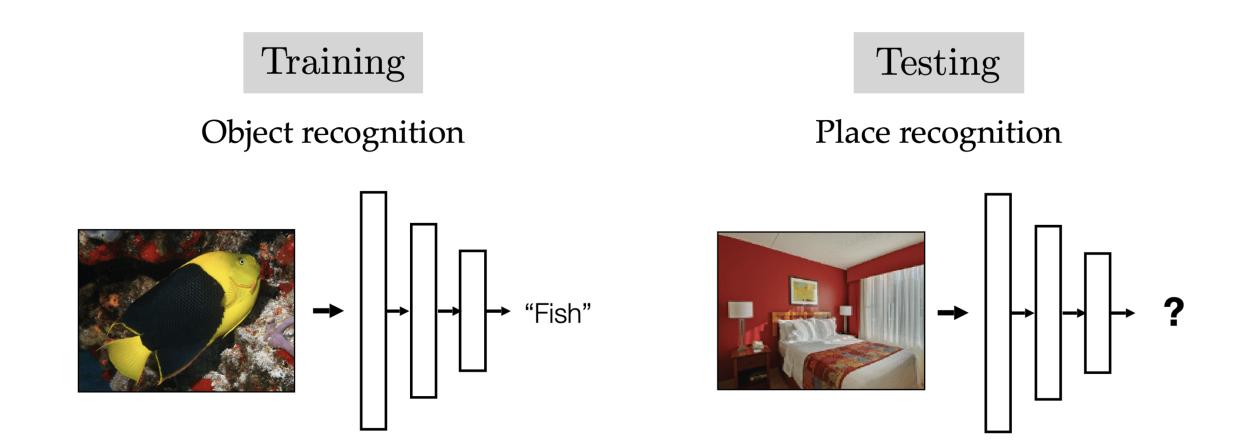


Deep learning

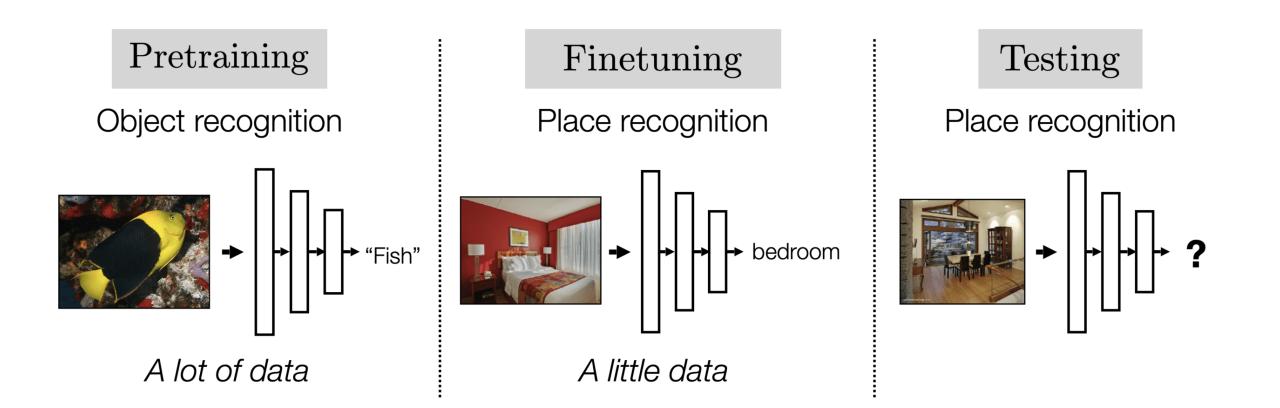


Transfer learning

"Generally speaking, a good representation is one that makes a subsequent learning task easier." — *Deep Learning*, Goodfellow et al. 2016



Often, what we will be "tested" on is to learn to do a new thing.



Finetuning starts with the representation learned on a previous task, and adapts it to perform well on a new task.

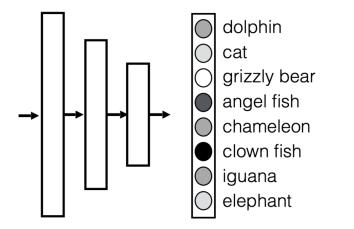
Finetuning in practice

- Pretrain a network on task A (often object recognition), resulting in parameters **W** and **b**
- Initialize a second network with some or all of **W** and **b**
- Train the second network on task B, resulting in parameters W' and b'

Finetuning in practice

Pretraining

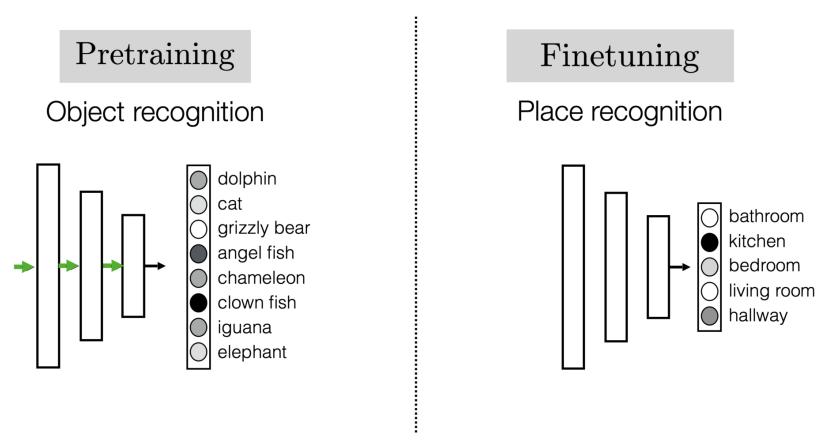
Object recognition



Finetuning

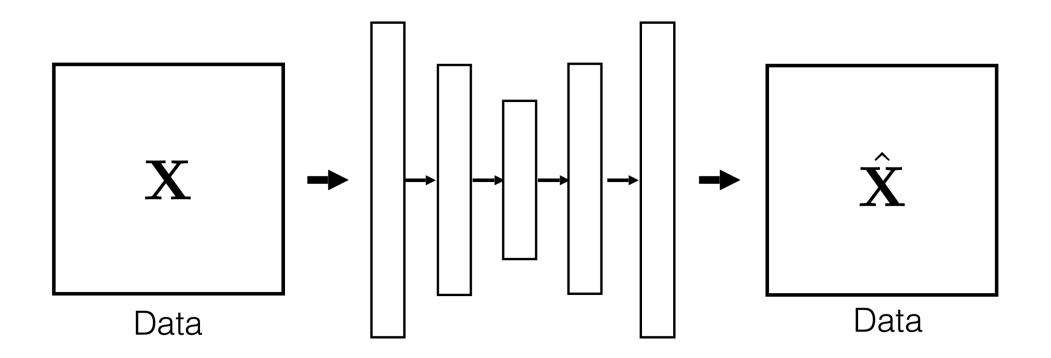
Place recognition

Finetuning in practice

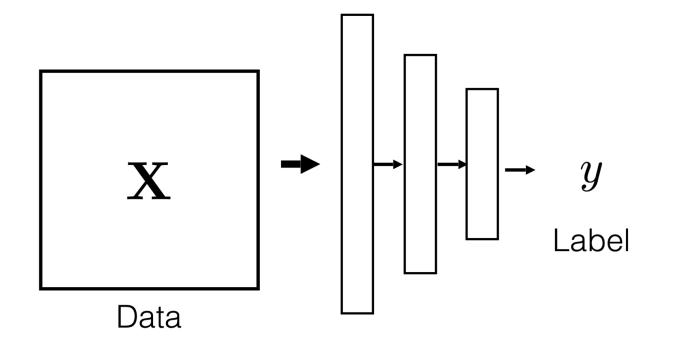


The "learned representation" is just the weights and biases, so that's what we transfer

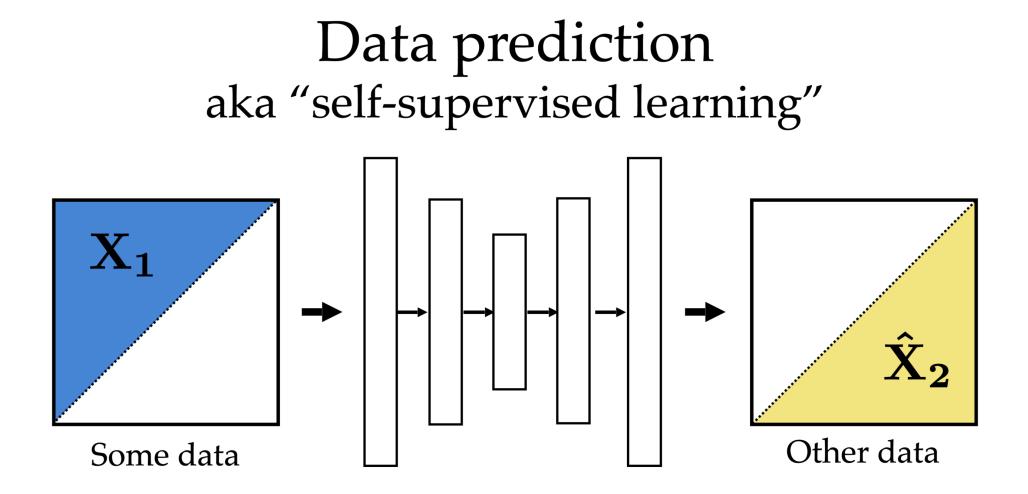
Data compression



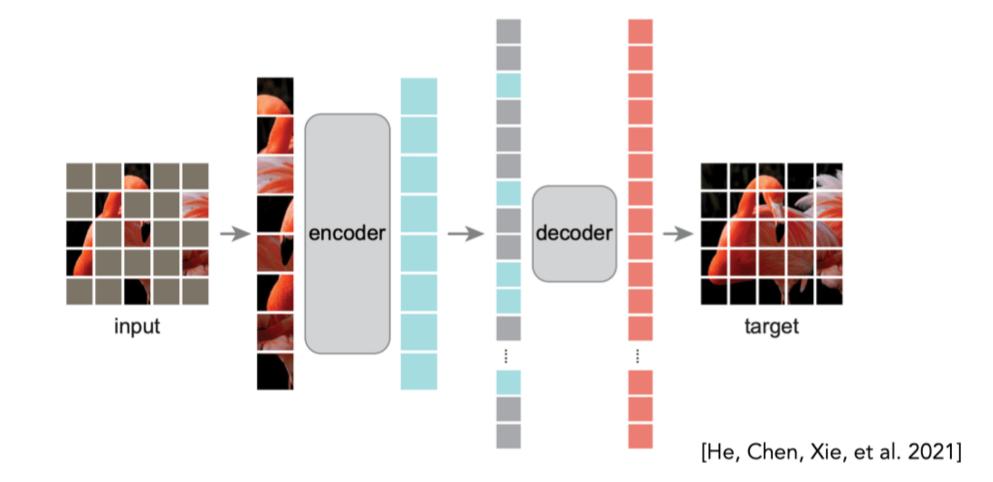
Label prediction

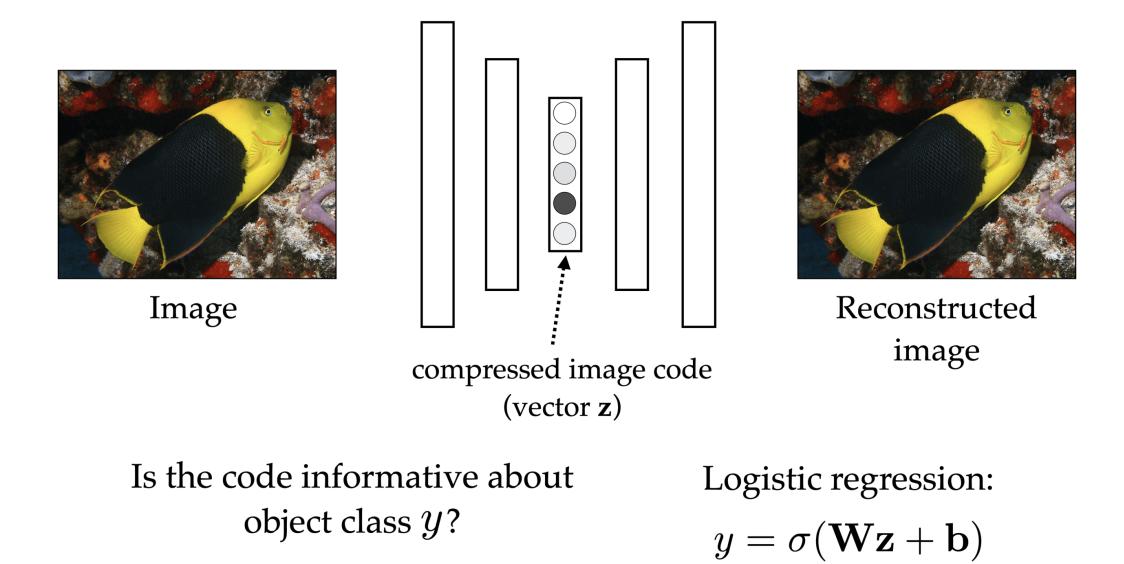


e.g., image classification

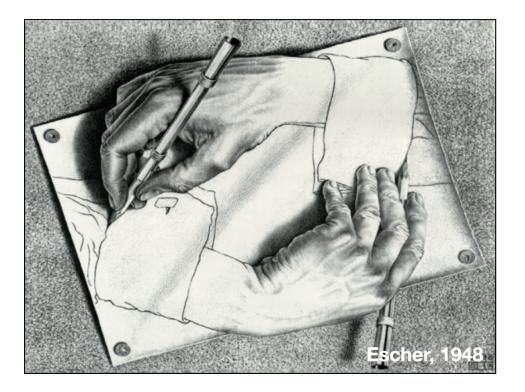


Self-supervision (masking)





Self-supervised learning



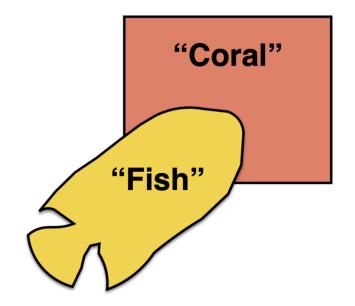
Common trick:

- Convert "unsupervised" problem into "supervised" empirical risk minimization
- Do so by cooking up "labels" (prediction targets) from the raw data itself

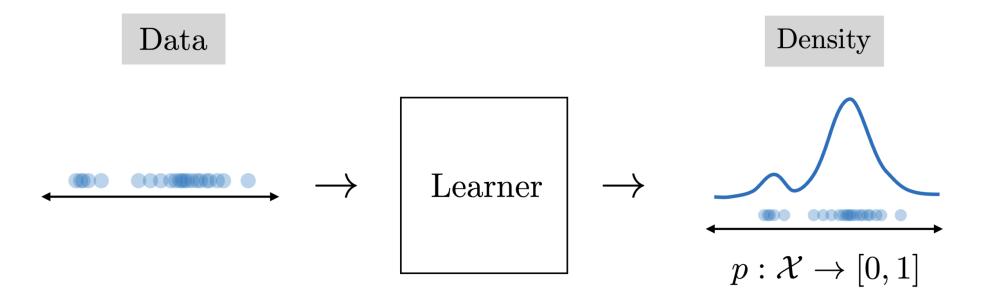
Representation learning

- Good representations are:
- 1. Compact (*minimal*)
- 2. Explanatory (sufficient)
- 3. Disentangled (independent factors)
- 4. Interpretable
- 5. Make subsequent problem solving easy

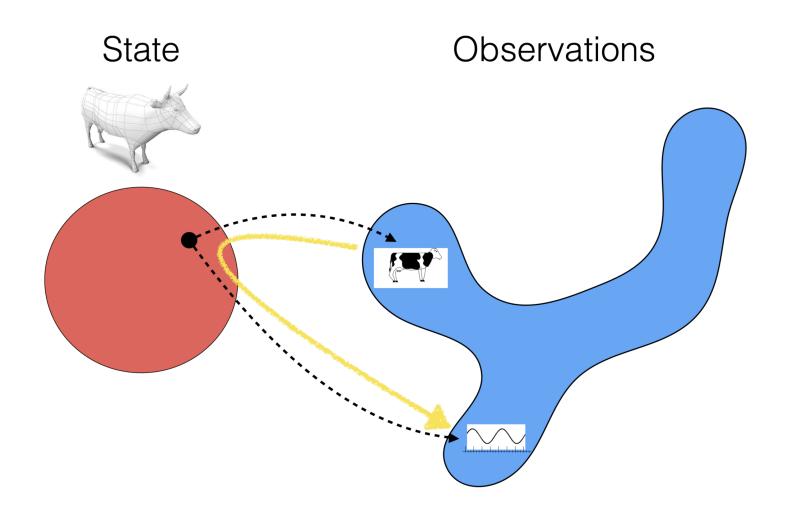
[See "Representation Learning", Bengio 2013, for more commentary]

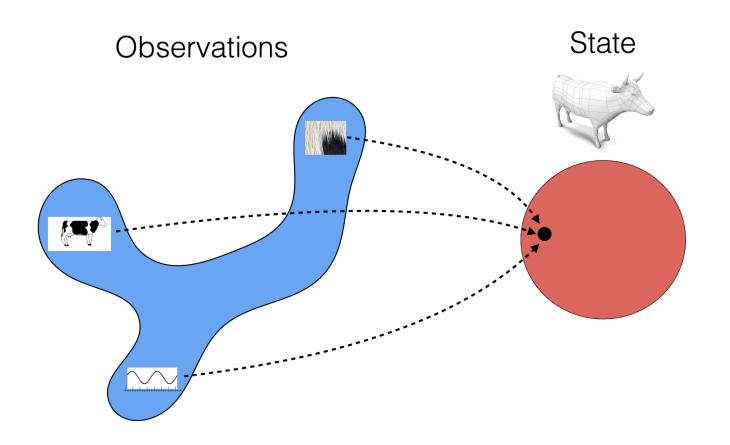


(Density estimation)



[figs modified from: http://introtodeeplearning.com/materials/2019_6S191_L4.pdf]





The way you measure the world does not change the underlying state

Dall-E 2 (UnCLIP):

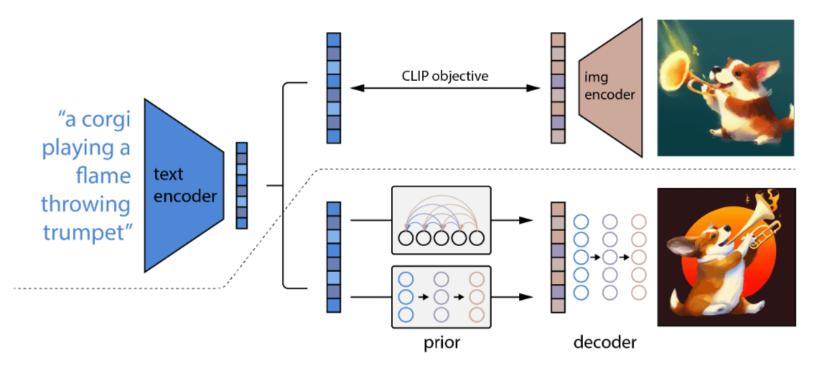


Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process, through which we learn a joint representation space for text and images. Below the dotted line, we depict our text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior to produce an image embedding, and then this embedding is used to condition a diffusion decoder which produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.

[https://arxiv.org/pdf/2204.06125.pdf]

We'd appreciate your feedback on the lecture.

Thanks!