
6.390: Midterm Exam, Spring 2024

Solutions

• This is a closed book exam. One page (8 1/2 in. by 11 in.) of notes, front and back, are
permitted. Calculators are not permitted.

• The total exam time is 2 hours.

• The problems are not necessarily in any order of difficulty.

• Record all your answers in the places provided. If you run out of room for an answer, continue
on a blank page and mark it clearly.

• If a question seems vague or under-specified to you, make an assumption, write it down, and
solve the problem given your assumption.

• If you absolutely have to ask a question, come to the front.

• Write your name on every piece of paper.

Name: MIT Email:

Question Points Score

1 12

2 19

3 22

4 20

5 9

6 18

Total: 100
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Trendy Pics

1. (12 points) Consider just the general shape of the following plots.

For each of the following possible interpretations of the quantities being plotted on the X and
Y axes, indicate which of the plots would most typically be the result, or indicate “none” if
none are appropriate. Provide a one-sentence justification for each answer.

X

Y

(A)

X

Y

(B)

X

Y

(C)

X

Y

(D)

Assume all quantities other than X are held constant during the experiment. Error quantities
reported are averages over the data set they are being reported on.

Any given plot may appear more than once in the answers.

(a) X axis: Number of training examples; Y axis: Test error.

Solution: A. With more training data, we are able to find a better predictor.

(b) X axis: Number of training examples; Y axis: Training error.

Solution: B. It’s easy to fit a small amount of data exactly; harder as we get more
data.

(c) X axis: Order of polynomial features; Y axis: Test error.

Solution: C. If we do not have enough features, we may underfit; If we have too many
features, we may overfit.

(d) X axis: Order of polynomial features; Y axis: Cross-validation error.

Solution: C. Same as test set error
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Regression or Repetition?

2. (19 points) Suppose that we are given a small dataset and we would like to learn the parameters
of a linear regressor hypothesis taking the form h(x) = θ⊤x+ θ0 for fitting the data.

(a) Consider the following dataset D1 containing three data points (in feature-label pairs):

x y

−4 15
2 −3

−1 0

Suppose that we would like to minimize:

J1(θ, θ0;D1) =
1

n

∑n

i=1
(θ⊤x(i) + θ0 − y(i))2.

i. For J1, we know that there exist θ∗ and θ∗0 that minimizes it. Can we find θ∗ via the
analytical solution formula? (No need for justification.)

Solution:
Yes.

ii. Suppose we know that for J1, one set of minimizing parameters has θ∗0 = 1. What is
the corresponding unknown θ∗?

Solution:

J1 = (−4θ + 1− 15)2 + (2θ + 1 + 3)2 + (−θ + 1)2

= (−4θ − 14)2 + (2θ + 4)2 + (θ − 1)2

= (16θ2 + 4× 14× 2θ + (14)2) +
(
4θ2 + 16θ + 16

)
+ (θ2 − 2θ + 1)

= (16 + 4 + 1)θ2 + (4× 14× 2 + 16− 2)θ + some constant

= 21θ2 + 126θ + some constant

So

θ∗ = − 126

21× 2
= −3

iii. What is J∗
1 , the minimum value achievable of J1?

Solution:

J∗
1 =

(12 + 1− 15)2 + (−6 + 1 + 3)2 + (3 + 1)2

3
=

4 + 4 + 16

3
= 8
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(b) Suppose instead of J1, we try to minimize:

J2(θ, θ0;D1, λ) =
1

n

∑n

i=1
(θ⊤x(i) + θ0 − y(i))2 + λ∥θ∥2.

with λ = 0.1, 10, and 100, respectively. Identify the λ used to generate plot (III).

Solution: For plot (III), we used λ = 100.

(c) Suppose we add a second feature for each of the three datapoints in D1. In other words,
consider the new dataset D2:

x1 x2 y

−4 −8 15
2 4 −3

−1 −2 0

Suppose that we would like to minimize:

J3(θ, θ0;D2) =
1

n

∑n

i=1
(θ⊤x(i) + θ0 − y(i))2.

i. For J3, we also know that there exist θ∗ and θ∗0 that minimizes it. Can we find θ∗ via
the analytical solution formula? If yes, provide such θ∗, if no, briefly justify why not.

Solution:
No. The two features are linearly dependent. Hence the X̃T X̃ will not be invert-
ible.

ii. Compare J∗
3 , the minimum value achievable of J3, with J∗

1 .
Which option below is true? Briefly justify your choice.

Solution:
J∗
3 = J∗

1 . Note that in D2, the 2nd feature is linearly dependent on the 1st feature.
Intuitively, this means the 2nd feature gives us nothing additional to learn from
towards a linear hypothesis, i.e. the 2nd feature is a redundant feature.
Algebraically, we can write out explicitly J3 and J1 to see their connection. Sup-
pose, for the sake of notational cleanness, that we let the set of parameters for J1
be α and β:

J1 =
[
(−4α+ β − 15)2 + (2α+ β + 3)2 + (−α+ β)2

]
/3
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and let the parameters for J3 be θ and θ0:

J3 =
[
(−4θ1 + 8θ2 + θ0 − 15)2 + (2θ1 + 4θ2 + θ0 + 3)2 + (−θ1 − 2θ2 + θ0)

2
]
/3

Then, we realize that by letting θ1 +2θ2 = α and θ0 = β, any value achievable by
J1 is achievable by J3, and vise-versa.
Hence J∗

1 = J∗
3 .
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Gradient Descent in Pictures

3. (22 points) John is using standard gradient descent iterations

x(k+1) = x(k) − η∇f(x(k)) (k = 0, 1, 2, . . . )

on a variety of functions f .

(a) First, John applies gradient descent to a piecewise-linear function f : R → R with the
(partial) graph shown on the figure below:

At points x = 2 and x = 4, John uses ∇f(2) = −0.5 and ∇f(4) = 0.

i. Starting from the initial guess x(0) = 5, and using step size η = 1, what will be the
values of x(1), x(2), and x(3)?

Solution: Answer: x(1) = 3, x(2) = 3.5, x(3) = 4. Reasoning: by inspection of
the graph, ∇f(x(0)) = 2, hence x(1) = 5− 1 · 2 = 3. Next, ∇f(x(1)) = −0.5, hence
x(2) = 3−1·(−0.5) = 3.5. Finally, ∇f(x(2)) = −0.5, hence x(3) = 3.5−1·(−0.5) =
4.
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ii. John discovers that, starting with x(0) = 1, there are many values of η > 0 for which
the gradient descent iterations produce oscillations of period 2 within the range (0, 6)
(i.e., x(k+2) = x(k) ∈ (0, 6) for all k = 0, 1, 2, . . . ). Find all such values of η.

Solution: Answer: η ∈ (1.5, 2.5). Reasoning: equality x(k+2) = x(k) requires
∇f(x(k)) = −∇f(x(k+1)). Since ∇f(x(0)) = −2, we need ∇f(x(1)) = 2, which
means x(1) = x(0) − η∇f(x(0)) = 1 + 2η ∈ (4, 6). Hence η ∈ (1.5, 2.5).

(b) After mastering one-dimensional optimization, John applies gradient descent to a smooth
function f : R2 → R, with η = 0.1, resulting in the sequence of points x(0) = A, x(1) = B,
x(2) = C, x(3) = x(4) = D shown on the plot below:

i. Find ∇f(x(0)), ∇f(x(1)), ∇f(x(2)), and ∇f(x(3)).

Solution: ∇f(x(k)) = η−1(x(k) − x(k+1)), hence

∇f(x(0)) =

[
−40
−20

]
,∇f(x(1)) =

[
0
20

]
,∇f(x(2)) =

[
20
−10

]
,∇f(x(3)) =

[
0
0

]
.
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ii. Is this statement true or false: “given the information provided, the point D must be
a global minimum of function f”? Briefly justify your choice.

Solution:
False. The only thing we know is that ∇f(D) = 0. With the info provided, the
point D could be the global maximum of f !

iii. A level set of a function h is said to be the set of points x for which h(x) = c for some
constant scalar c. (For example, for function h(x) = x21 + 2x22, its level sets at various
c levels are concentric ellipses.)

The plots 1-4 below show some circles. Given the sequence we get from gradient de-
scent on f, which of these circles can possibly be a level set of function f? Choose all
that apply; and provide a short justification.

Hint: for any point p, think about the relation between the direction of ∇f(p) and
the level set passing through p.

Solution:
plots 2 and 3.

Since the gradient vector’s components are the partial derivatives of the function
with respect to each of its variables, by definition, gradient vector indicates how
fast the function changes in each coordinate direction. In other words, the gradi-
ent vector must point towards the direction of maximum increase of the function’s
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value.

Now consider level sets. By definition, there is no change in the function’s value
for all points on a level set.

Combined with the fact above about gradient vectors, we must have that gradient
vectors must be perpendicular to tangent line of a levelset.
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Classi-fish-cation

4. (20 points) Allen, Bonnie, and Clive are restoring a polluted river in their town and the fish
are starting to come back! There are three different species of fish: Red, Blue, and Green.
They have setup a sensor in the river which collects 2D data (that is, two features for each
data point) from the fish that swim by. After a day, they get the dataset plotted below.

The friends would like to use this dataset to to learn a fish classifier. However, each friend
wants to try a different multi-class classification approach.

(a) Allen thinks One-vs-All (OVA) classification is the best approach.

Recall that, in OVA, we train one binary classifier for every class. For instance, towards
training for the “Red” OVA classifier, we use the three data points at [1, 2], [1, 4], and
[2, 6] as positives (“red”), and all other six data points as negatives (“not red”). Similarly,
we can train for the “Green” classifier and “Blue” classifier. And at prediction time, we
return the label that the classifiers are most confident about.

Allen runs his classifier and gets the output below, with the classifiers unlabeled.

i. On the plot below, use arrows to clearly draw the normal direction for each of the
classifiers (Red, Green, and Blue).
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Solution:

ii. What is the classification accuracy of Allen’s approach on the training dataset? (You
may leave your answer in fractional form, if applicable.) Briefly show your reasoning.

Solution: 8/9. All data points are correctly classified except for the green point
at (6, 1). This data point is on the positive side of both the blue classifier and
the green classifier, but is farther away from the blue classifier than the green.
This tells us that our confidence that this point is blue (or otherwise, its output
on the sigmoid of this classifier) is higher than it is for green, which is incorrect.
All other data points are only on the positive side of their correct classifier, and
therefore we must have the highest confidence that they are each the appropriate
class.

(b) Bonnie thinks One-vs-One (OVO) classification is superior.

Recall that in OVO, we train one binary classifier for every pair of classes. For instance,
towards training for the “Red-Green” OVO classifier, we use the three data points at
[1, 2], [1, 4], and [2, 6] as positives (“red”), and the three data points at [3, 5], [4, 5], and
[6, 1] as negatives (“green”, or the “not-red”). Similarly, we can train for the “Blue-Red”
classifier (with “Blue” being the positive class and “Red” being the negative), and “Blue-
Green” classifier (with “Blue” being the positive class and “Green” being the negative).
At prediction time, each classifier returns a single binary prediction, and the class with
the most votes overall will be our final prediction.

Bonnie runs OVO and gets the Blue-Red, Blue-Green, Red-Green classifiers plotted below.
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i. Match the lines with “Blue-Red”, “Blue-Green”, “Red-Green” classifiers.

Solution:
.......... (dotted line): Blue-Green

−−− (dashed line): Red-Green

——— (solid line): Blue-Red

ii. What is the classification accuracy of Bonnie’s approach on the training dataset? (You
may leave your answer in fractional form, if applicable.) Briefly show your reasoning.

Solution: 1. Here, each data point correctly gets at least two votes for the
appropriate class.

iii. Consider the Blue-Red classifier. Which of the options below would be a plausible θ
and θ0 values that could lead to this classifier? (Recall that for this Blue-Red classi-
fier, the “Blue” class is the positive class.)

Choose all that apply and provide a one-sentence justification.

Solution:
θ = [1.3,−1], θ0 = −0.9. The clearest way to see this is based on the normal,
which should be pointing toward the class Blue in the classifier Blue-Red (note
that this is the convention we have defined here for this style of labeling, which is
not necessarily the same as what is in the homework). This normal is positive in
x1 and negative in x2. The option θ = [1.3,−1], θ0 = −0.9 is the only one which
satisfies this.
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iv. Is it possible that the Blue-Red classifier results from a set of θ and θ0 values that is
different than the options given in the previous part?

If yes, provide one such set of θ and θ0 values. If not, provide a one-sentence justifi-
cation.

Solution: Yes. Any positive scaling of the correct option given in the previous
part.
E.g., θ = 2 ∗ [1.3,−1], θ0 = 2 ∗ (−0.9)

(c) Finally, Clive argues that a direct multi-class classification (using softmax and NLLM loss)
is better than the binary classifiers from both OVA and OVO. Assume Clive encodes the
true labels as 3× 1 one-hot vectors corresponding to each class in the order

y =

 Red
Blue
Green


i. Is the following a possible softmax output from Clive’s classifier? Why or why not?

g =

0.300.25
0.41


Solution: No. Entries do not sum up to 1.

ii. Let’s look at a single data point [2, 4] whose true label is Red. Suppose for this data
point, Clive gets the following softmax output,

g =

0.460.23
0.31


What is the loss LNLLM incurred by this data point?

Recall that LNLLM(g, y) = −
∑K

k=1 yk log(gk). Also, for reference, log(0.46) = −0.78,
log(0.23) = −1.47, log(0.31) = −1.17.

Solution:

y =

10
0

 (1)

Depending on if the true label is Red: LNLLM(g, y) = −((1∗−0.78)+(0∗−1.47)+
(0 ∗ −1.17)) = 0.78
Or if the prompt says label is Blue: LNLLM(g, y) = −((0 ∗ −0.78) + (1 ∗ −1.47) +
(0 ∗ −1.17)) = 1.47
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Banana Madness

5. (9 points) From 2016-2019, the “Banana Man” (that is, an undergraduate student in a banana
costume) could be seen running through some of the popular lectures on campus. There was
no warning as to when or where the Banana Man would show up (for example, you might be
mid-derivation in 18.01 and then, BAM!, a large banana is sprinting behind your professor with
a shout–“That’s bananas!”).

New student Tyler is a big fan, and is interested in seeing if he can figure out how the Banana
Man chose when and where to appear in class.

(a) First, Tyler interviews former students about what they can remember about the Banana
Man encounters, in order to collect some data.

For each of the following, suggest an appropriate feature encoding, and provide the di-
mension of the feature encoding.

i. Each interviewee remembers the class they were in when they had an encounter. It
was always one of {3.091, 5.111, 18.01, 18.02, or 6.100A}.

Solution: This is a categorical variable, and there is no relationship between each
class. We can use a one-hot vector of size 5, in which only a single class is marked
at a time.

ii. Each interviewee also roughly remembers when an encounter happened: either 1) in
the beginning of class, 2) the middle of class, or 3) the end of class.

Additionally, it was well-known on campus that the Banana Man favored the following
times in descending order: middle of class (preferred most!), beginning of class (less
preferred), and end of class (least preferred). However, the exact magnitude of the
preference between them was unknown.

Solution: Since we know a-priori that the Banana Man had established prefer-
ences on the section of class he would appear during, we might try a thermometer
encoding with a vector of size 3 with the end of class being the lowest (or [1, 0,
0]), beginning of class being in the middle (or [1, 1, 0]) and the middle of class
being the highest (or [1, 1, 1]). Therefore, we have built-in a relationship between
these sections of class, even though we don’t know the exact numerical relation-
ship between them. (Technically, we could also argue that this is categorical and
simply use a one-hot vector, in which that relationship may still be learned. But
the prior knowledge of preference ordering would be lost).
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iii. Tyler can also find out the number of students who were present in lecture for each
encounter. This might range from zero students showing up (during busy weeks), to a
maximum of 566 students attending (full capacity in the largest lecture hall, 26-100).

Solution: This is a continuous numerical feature with a known range. We ideally
want our values to be in an appropriate range, [0, 1]. Both standardization and
normalization could be acceptable answers here.

(b) Using all of this data, Tyler now wants to make predictions about how likely it might’ve
been to see the Banana Man.

He wants to design a simple neural network for the task. What should the dimension of
Tyler’s output prediction be (that is, the shape of this output)? What would be a good
choice of activation function on the output layer? Briefly justify your answer.

Solution: Tyler wants a probability, so this should be a scalar number output in the
range 0 to 1. ”Scalar” or size 1 are acceptable. Tyler wants a single probability, so he
should use a sigmoid activation. Note that while there are many cases where softmax
is a helpful function for probabilities, and is equivalent to sigmoid when n = 2, softmax
cannot be used here as the probability on a single output would always be 1.
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Neural Not/And/Ors?

6. (18 points) Neural networks have the capability to express a wide variety of functions – an
attribute that has been critical in their success. In this question, we will show that neural
networks have the ability to represent any logical (Boolean) formula, even when limited to
having only one hidden layer!

Let us assume the following setup:

• Inputs: x(i) ∈ {0, 1}m are binary vectors of length m. (That is, a data point x(i) is
m-dimensional, and each of the m entries is either a 0 or a 1.)

• Activation function: The step function, i.e., f(z) = 1 if z > 0 and 0 otherwise. (We
would not actually want to use this activation function when training a neural network
due to issues with zero gradients, but are using it here for simplicity.)

• Outputs: y(i) ∈ {0, 1}, where 0 indicates FALSE and 1 indicates TRUE.

(a) Suppose m = 2, i.e., the input is a pair of binary values. Suppose we have a neural network
with no hidden units and just a single output unit, i.e., y = f(w⊤x + w0) is the entire
neural network.

i. Convince yourself of this fact: we can represent Boolean OR by letting w =
[
2 2

]⊤
and w0 = −1.

Now, what is a set of values for w and w0 that would allow us to represent Boolean
AND? (See the logic tables below for reference.)

OR

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

AND

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

Solution: One option is w =
[
2 2

]⊤
and w0 = −3.
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ii. What is a set of values for w and w0 for a unit that would allow us to represent the
Boolean NAND operation – which is ((NOT x1) OR (NOT x2))?

Hint: (1− xi) is equivalent to (NOT xi). Can you plug this in to the “OR unit” from
the previous part, and rearrange to get the desired expression?

Solution: One approach is to let wi = 2 if xi is not negated, and wi = −2 if xi
is negated. We then let w0 equal −1 plus two times the number of variables that
are negated (so, w0 = −1 if neither are negated, 1 if one is negated, and 3 if both
are negated).

As an example, let us see how this works for computing the Boolean NAND
operation, which can be expressed as ((NOT x1) OR (NOT x2)). Let wOR =[
2 2

]⊤
and wOR

0 = −1 be the weights and offset of our “OR unit.” We can
compute NAND as follows:

(wOR)⊤
[
1− x1
1− x2

]
+wOR

0 =

[
2
2

]⊤ [
1− x1
1− x2

]
−1 = (2−2x1)+(2−2x2)−1 =

[
−2
−2

]⊤
x+3.

Thus, w =
[
−2 −2

]⊤
and w0 = 3 are potential weights and offset for a “NAND

unit.”
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(b) Naturally, we wonder if a similar design approach could be used to construct out our fa-
vorite (well, at least most-frequently visited) Boolean expression: XOR.

It turns out that we can’t express Boolean XOR using a neural network with no hidden
layer. However, we can represent XOR using a neural network with one hidden layer.

Note for m = 2, XOR can be written as (x1 OR x2) AND ((NOT x1) OR (NOT x2)).

Let (wOR
1 , wOR

2 , wOR
0 ), (wAND

1 , wAND
2 , wAND

0 ), and (wNAND
1 , wNAND

2 , wNAND
0 ) be the weight-

s/offsets of our OR, AND, and NAND units, respectively. Label the arrows of the neural
network below using these weights/offsets, so that the network represents Boolean XOR.

Solution:

!

∑

∑

#

#

$!

$"

∑ #

%!#$

%"#$
%%#$%!&'&(

%"&'&(
%%&'&(

%!'&(

%"'&(
%%'&(
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(c) That was cool! In fact, it turns out that any Boolean function can be represented by a
neural network with a single hidden layer.

This relies on the following facts, which hold even for m > 2:

• We can construct a one-unit neural network representing any logical expression that
is a combination of ORs and NOTs (as you showed for m = 2 above).

• Any Boolean formula can be represented in what is called conjunctive normal form
- that is, the “AND” of multiple clauses containing only ORs and NOTs. A few
examples of formulas in conjunctive normal form are given below for illustration:

◦ (x1 OR x2) AND ((NOT x1) OR (NOT x2))

◦ (x1 OR (NOT x2) OR x3) AND (x2 OR x4)

◦ (x2 OR x5) AND (x1 OR x3 OR x4) AND ((NOT x2) OR x3)

i. Briefly describe in words: Given an arbitrary formula in conjunctive normal form, how
would you represent it as a neural network with one hidden layer, using a combination
of “OR/NOT clause units” and “AND units”?

Solution: For each clause in the conjunctive normal form formula, construct an
appropriate “OR/NOT clause unit” representing that clause and put it in the
hidden layer. Connect the appropriate inputs to each “OR/NOT clause unit,”
and feed the outputs of all these units to a single “AND unit” in the output layer.

ii. If a single hidden layer is enough to represent all Boolean functions, why would we
ever want to use multiple hidden layers?

Hint: Note that there are 2m potential clauses that could be included in a conjunctive
normal form formula.

Solution: You may need an exponential number of hidden units to represent your
formula. That’s a lot of units! Using more hidden layers may allow us to get an
equally expressive neural network using fewer units overall.

Page 19


