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Recall: pollution prediction example
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What do we want? A good way to label new features

For example, h : For any z, h(z) = 1,000, 000, valid but is it any good?



Hypothesis class H : set of h (or specifically for today, the set of hyperplanes)

A linear regression hypothesis

data %
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o Training error

e Test error

Erain (h) = 3 Xy £ (h (21) ,y)

n' new points

Eiest (B) = & L0 £ (R (2) ,y)

e Squared loss

£ (h(zD),yD) = (b (2)) — y© )?

$§n+1)
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Recall 1labl

(A) k=1
(B) k=5

random_regress (X, Y, k):
n, d = X.shape w0 ; 1o
ths = np.random.randn(d, k) - . 1 -
thOs = np.random.randn(1l, k) o - o5
errors = lin reg err(X, Y, ths, thOs)

(C) k=20
i = np.argmin(errors) .

theta, thetal0 = ths[:,i:i+1], thOs[:,i:i+1]
(theta, thetal), errors[i]

« Will this method eventually get arbitrarily close to the best
solution? What do you think about the efficiency of this
method?
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Linear regression: the analytical way

« How about we just consider all hypotheses in our class and choose the one with
lowest training error?

« We'll see: not typically straightforward

e But for linear regression with square loss: can do it!

e In fact, sometimes, just by plugging in an equation!
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Don't want to deal with 6,
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Don't want to deal with 6,
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"center" the data
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Temperature Population Pollution
Chicago 90 45 7.2
New York 20 32 9.5
Boston 35 100 8.4

center the data U,

Temperature Population Pollution
Chicago 41.66 -14 -1.66
New York -28.33 -27 1.133
Boston -13.33 41 0.033
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Temperature Population Pollution
Chicago 41.66 -14 -1.66
New York -28.33 -27 1.133
Boston -13.33 41 0.033
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Assemble
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Objective function (training error)

o) =1

n

 Goal: find 6 to minimize J(0)

« Q: What kind of function is J(6)?
o A: Quadratic function

e Q: What does J(8) look like?

o A: Typically, looks like a "bowl]"

(X0 -Y)' (X0-Y)
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« Typically, J() = (X6 —Y)" (X6 — Y) "curves up" and is unique minimized at a point if

gradient at that point is zero

[ 0J /00,
VoJ = : =2 (XTX60 - XTY)
| 0J/06,;
Set the gradient VyJ 0 o |

— =(X'X) XY

« When 6* is well defined, it's indeed guaranteed to be the unique minimizer of J(6)
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.« 0* = (X'X) ' XTY is only well-defined if (X' X) is invertible

e and (X ' X) is invertible if and only if X is full column rank

So, we will be in trouble if X is not full column rank, which happens:

a. either when n<d , or

b. columns (features) in X have linear dependency

s P

Ax and Ay are linear combinations of columns of A.

1 2

[3 4] [ §1]=A[x Y] = [ax Ay]

5 6] 2 72 https:/ / github.com /kenjihiranabe / The-Art-of-Linear-Algebra
https:/ /www.3bluelbrown.com/topics/linear-algebra
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https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra
https://www.3blue1brown.com/topics/linear-algebra

Case Example Objective Function |Optimal Parameters
Looks Like
2a. less data g
than features .
§
o,

2b. linearly
dependent
features

pollution

infinitely many
optimal parameters
(that define optimal

hyperplanes)
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Quick Summary: 2. When X is not full column rank

1. Typically, X is full column rank a either when n<d, or

b. columns (features) in X have linear dependency

 J(0) looks like a bowl o J(6) looks like a half-pipe

« 0 = (X X ) XYy e This “== formula is not well-defined

« 0* gives the unique optimal hyperplane e Infinitely many optimal hyperplanes
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« Sometimes, noise can resolve the invertibility issue

e but still lead to undesirable results

« How to choose among hyperplanes?

o Prefer § with small magnitude (less sensitive prediction when x changes slightly)
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Ridge Regression

« Add a square penalty on the magnitude
o Jrdgge (0) = 1(X0—-Y)" (X0-Y)+ A6
(A>0)
e \is a so-called "hyperparameter”
e Setting Vg Jyiage (0) = 0 we get 0* = (X' X + n)\I)_l X'Y

e (0* (here) always exists, and is always the unique optimal parameters.)

o (see recitation/hw for discussion about the offset.)
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Cross-validation

(D)

2 ()

Cross-validate (D, , k)

Divide D, into k chunks Dp1,...

roughly equal size)

7Dn,k (of
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Cross-validation
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Cross-validate (D, , k)

Divide D, into k chunks Dy1,...

roughly equal size)
for i = 1 to k

)Dn,k (of
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Cross-validation
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Cross-validation
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Cross-validation

e ()

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dnpi (of
roughly equal size)
for i = 1 to k
train h; on D,\D,; (i.e. except chunk i)
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Cross-validation

e 2 ()

Cross-validate (D, , k)
Divide D, into k chunks Dpi1,...,Dp i (of
roughly equal size)
for i =1 to k
train h; on Dp\D,; (i.e. except chunk i)
compute “test” error &(h;,D,;) of h; on Dy,
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Cross-validation

(D 2 (™)

Cross-validate (D, , k)
Divide D, into k chunks Dp1,...,Dpr (of
roughly equal size)
for i = 1 to k
train h; on Dy\D,; (i.e. except chunk i)
compute “test” error &(h;,D,;) of h; on Dy,

k
1
Return z Z E(hi, Dp.i)

1=1
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Comments on (cross)-validation

good idea to shuffle data first
a way to "reuse” data
it's not to evaluate a hypothesis

rather, it's to evaluate learning algorithm (e.g. hypothesis class
choice, hyperparameters)

Could e.g. have an outer loop for picking good hyperparameter
or hypothesis class
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We'd love to hear
your thoughts.

Thanks!
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https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?embedded=true

