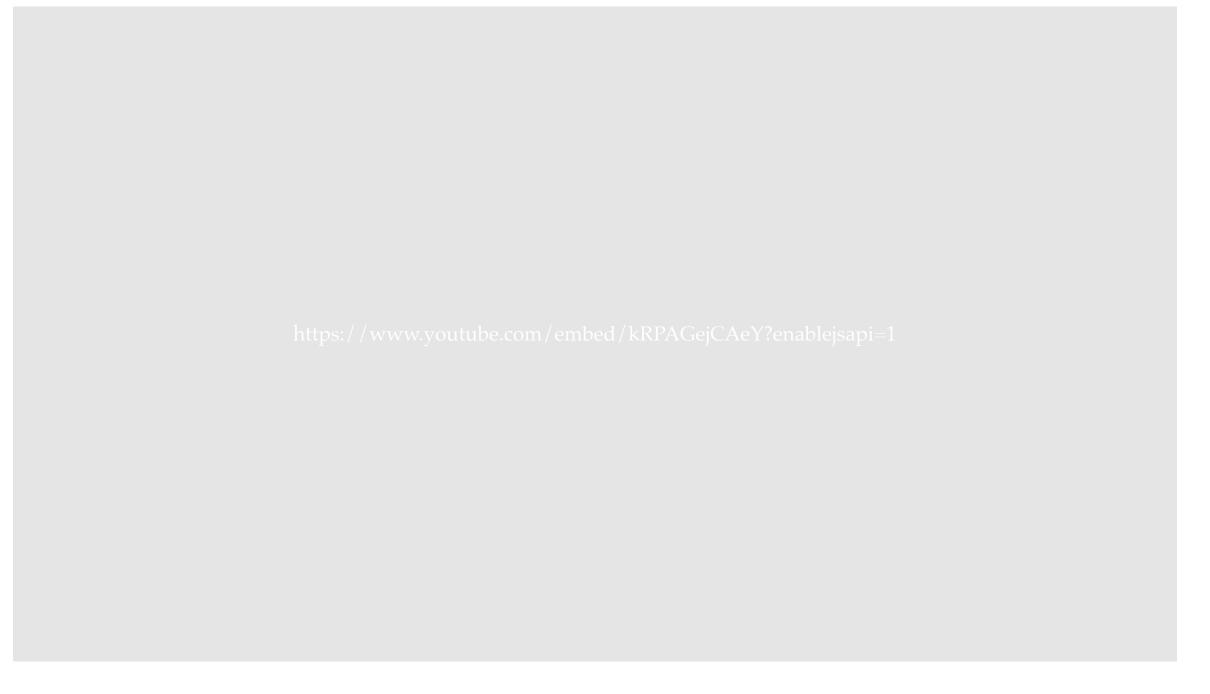


6.390 Intro to Machine Learning

Lecture 2: Linear Regression and Regularization

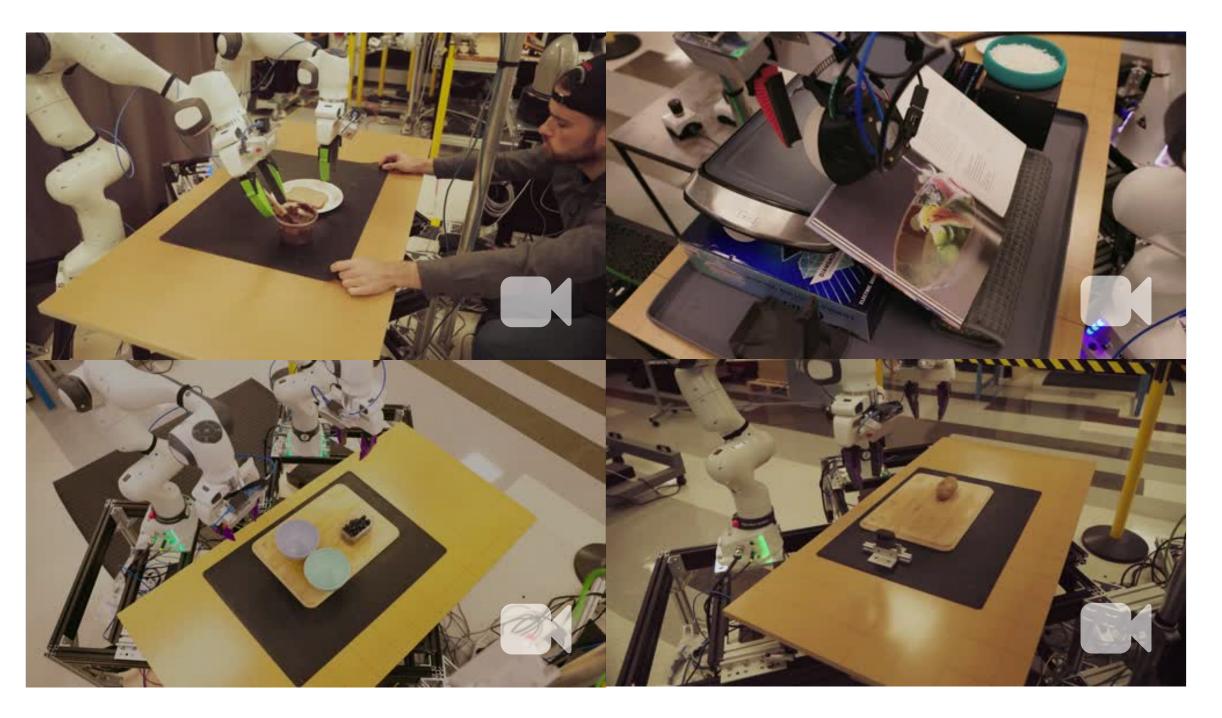
Shen Shen Feb 7, 2025 (11am, Room 10-250)

1



DARPA Robotics Competition 2015

Optimization + first-principle physics



- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validation

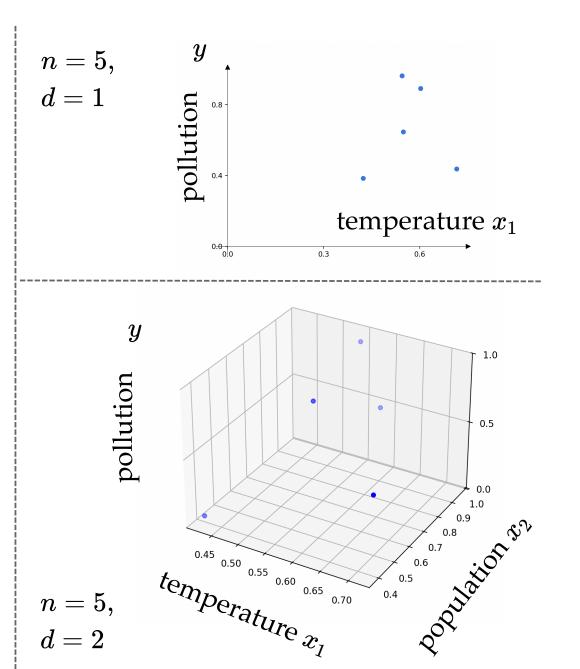
- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validation

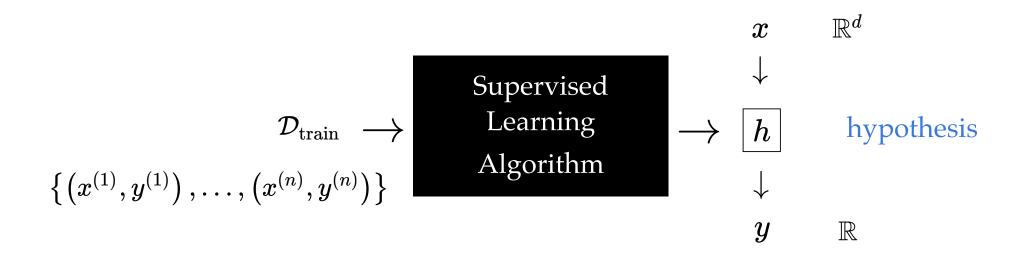
Recall: pollution prediction example

Training data:

$$\mathcal{D}_{ ext{train}} \quad \left\{ \left(x^{(1)}, y^{(1)}
ight), \ldots, \left(x^{(n)}, y^{(n)}
ight)
ight\}$$
 feature vector label

$$egin{bmatrix} x_1^{(1)} \ x_2^{(1)} \ dots \ x_d^{(1)} \end{bmatrix} &\in \mathbb{R}^d \ dots \ x_d^{(1)} \end{bmatrix}$$





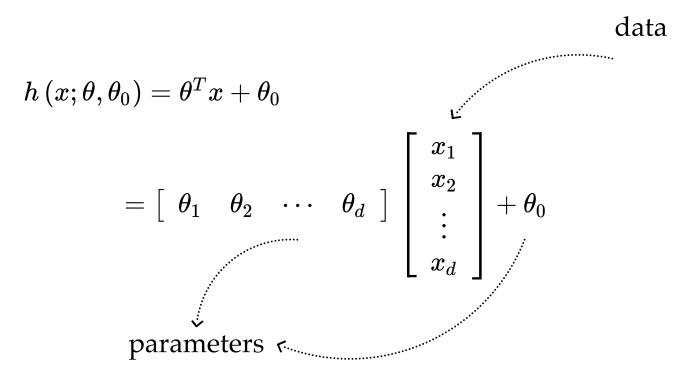
What do we want? A good way to label new features

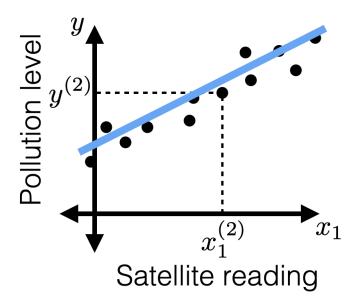
For example, h: For any x, h(x) = 1,000,000, valid but is it any good?

Hypothesis class \mathcal{H} : set of h (or specifically for today, the set of hyperplanes)

A linear regression hypothesis

•





• Training error

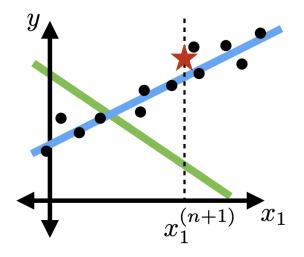
$$\mathcal{E}_{ ext{train}}\left(h
ight) = rac{1}{n} \sum_{i=1}^{n} \mathcal{L}\left(h\left(x^{(i)}
ight), y^{(i)}
ight)$$

• Test error n' new points

$$\mathcal{E}_{ ext{test}}\left(h
ight) = rac{1}{n'} \sum_{i=n+1}^{n+n'} \mathcal{L}\left(h\left(x^{(i)}
ight), y^{(i)}
ight)$$

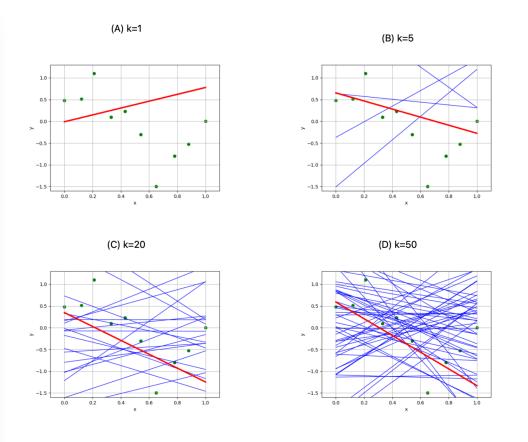
• Squared loss

$$\mathcal{L}\left(h\left(x^{(i)}
ight),y^{(i)}
ight)=(h\left(x^{(i)}
ight)-|y^{(i)}|)^2$$



Recall lab1

```
def random_regress(X, Y, k):
   n, d = X.shape
   ths = np.random.randn(d, k)
   th0s = np.random.randn(1, k)
   errors = lin reg err(X, Y, ths, th0s)
   i = np.argmin(errors)
   theta, theta0 = ths[:,i:i+1], th0s[:,i:i+1]
   return (theta, theta0), errors[i]
```



 Will this method eventually get arbitrarily close to the best solution? What do you think about the efficiency of this method?

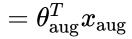
- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validationa

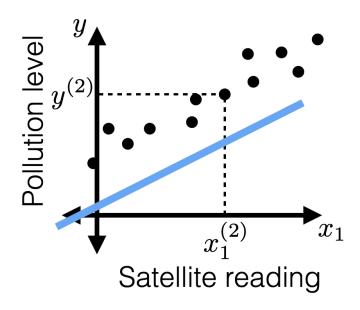
Linear regression: the analytical way

- How about we just consider all hypotheses in our class and choose the one with lowest training error?
- We'll see: not typically straightforward
- But for linear regression with square loss: can do it!
- In fact, sometimes, just by plugging in an equation!

Don't want to deal with θ_0

$$h\left(x; heta, heta_{0}
ight)= heta^{T}x+ heta_{0}$$

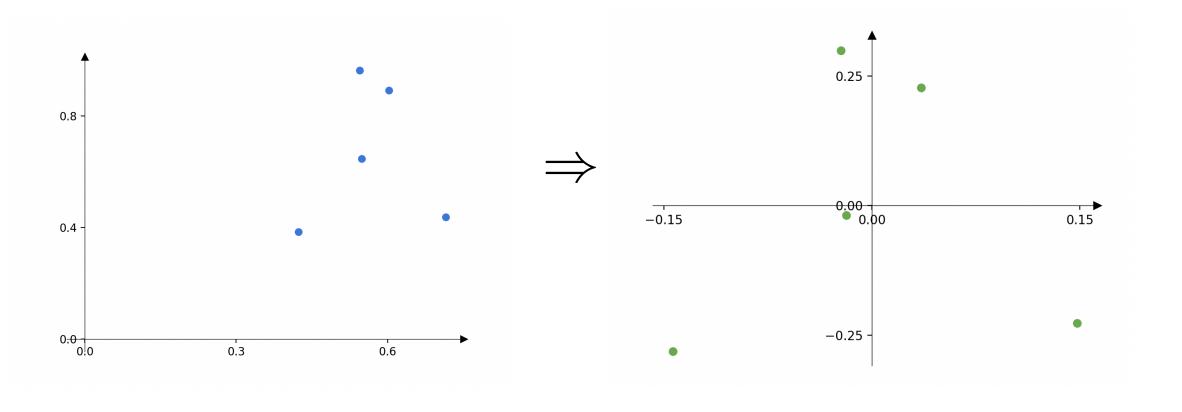




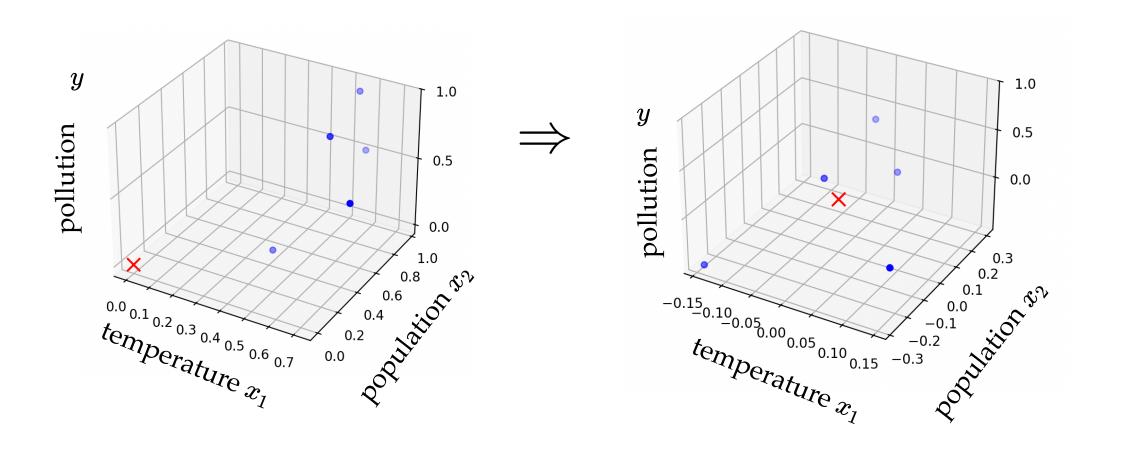
Append a "fake" feature of 1

Don't want to deal with θ_0

"center" the data



"center" the data



	Temperature	Population	Pollution
Chicago	90	45	7.2
New York	20	32	9.5
Boston	35	100	8.4

center the data

	Temperature	Population	Pollution
Chicago	41.66	-14	-1.66
New York	-28.33	-27	1.133
Boston	-13.33	41	0.033

	Temperature	Population	Pollution
Chicago	41.66	-14	-1.66
New York	-28.33	-27	1.133
Boston	-13.33	41	0.033

Assemble

$$X = egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \ dots & \ddots & dots \ x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} y^{(1)} \ dots \ y^{(n)} \end{bmatrix}$$

Assemble

$$X = egin{bmatrix} x_1^{(1)} & \dots & x_d^{(1)} \ dots & \ddots & dots \ x_1^{(n)} & \dots & x_d^{(n)} \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} y^{(1)} \ dots \ y^{(n)} \end{bmatrix}$$

Now the training error:

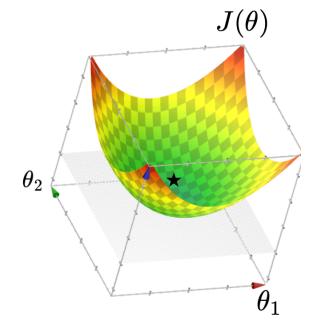
$$J(heta) = rac{1}{n} \sum_{i=1}^n \left({x^{(i)}}^ op heta - y^{(i)}
ight)^2 \quad = rac{1}{n} (X heta - Y)^ op (X heta - Y)$$

- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validationa

Objective function (training error)

$$J(heta) \ = rac{1}{n} (X heta - Y)^ op (X heta - Y)$$

- Goal: find θ to minimize $J(\theta)$
- Q: What kind of function is $J(\theta)$?
- A: Quadratic function
- Q: What does $J(\theta)$ look like?
- A: *Typically,* looks like a "bowl"

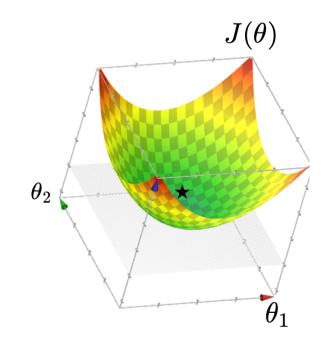


• Typically, $J(\theta) = \frac{1}{n}(X\theta - Y)^{\top}(X\theta - Y)$ "curves up" and is unique minimized at a point if gradient at that point is zero

$$abla_{ heta}J = \left[egin{array}{c} \partial J/\partial heta_1 \ dots \ \partial J/\partial heta_d \end{array}
ight] = rac{2}{n}\left(X^TX heta - X^TY
ight)$$

Set the gradient $\nabla_{\theta} J \stackrel{\text{set}}{=} 0$

$$\Rightarrow \quad heta^* = \left(X^ op X
ight)^{-1} X^ op Y$$



• When θ^* is well defined, it's indeed guaranteed to be the unique minimizer of $J(\theta)$

- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validationa

- $\theta^* = \left(X^{ op}X\right)^{-1}X^{ op}Y$ is only well-defined if $\left(X^{ op}X\right)$ is invertible
- and (X^TX) is invertible *if and only* if X is full column rank

So, we will be in trouble if *X* is not full column rank, which happens:

- a. either when n < d, or
- b. columns (features) in *X* have linear dependency

Ax and Ay are linear combinations of columns of A.

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} = A[\mathbf{x} \quad \mathbf{y}] = [A\mathbf{x} \quad A\mathbf{y}]$$

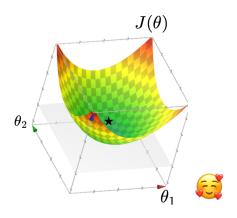
https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra https://www.3blue1brown.com/topics/linear-algebra

Case	Example	Objective Function Looks Like	Optimal Parameters
2a. less data than features	$tem_{perature} \underbrace{x_{l}^{0.04} o.02}_{0.02} \underbrace{0.04}_{0.04} \underbrace{0.02}_{0.04} 0.02$	$J(\theta)$	infinitely many optimal parameters (that define optimal
2b. linearly dependent features	woith lod $temperature (\circ F) x_1$	$ heta_2$	hyperplanes)

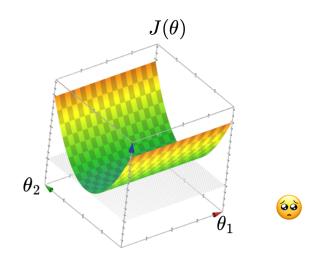
Quick Summary:

1. Typically, X is full column rank

- $J(\theta)$ looks like a bowl
- $ullet \; heta^* = \left(X^ op X
 ight)^{-1} X^ op Y$
- θ^* gives the unique optimal hyperplane

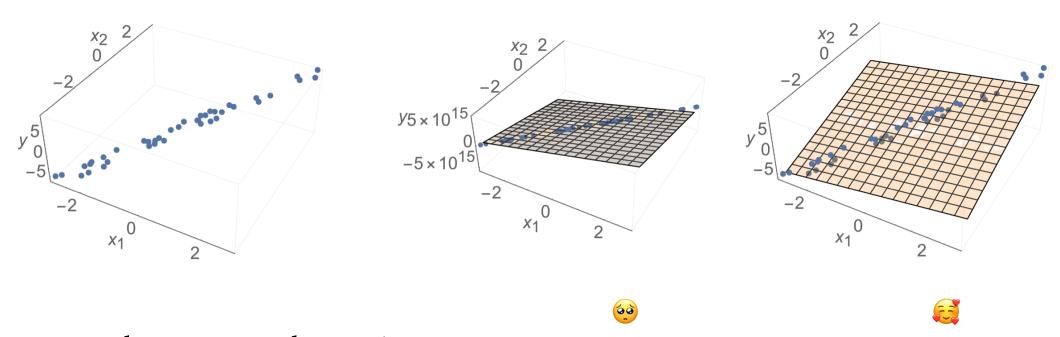


- 2. When *X* is not full column rank
- a. either when n < d, or
- b. columns (features) in X have linear dependency
- $J(\theta)$ looks like a half-pipe
- This **b** formula is not well-defined
- Infinitely many optimal hyperplanes



- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validation

- Sometimes, noise can resolve the invertibility issue
- but still lead to undesirable results



- How to choose among hyperplanes?
- Prefer θ with small magnitude (less sensitive prediction when x changes slightly)

Ridge Regression

Add a square penalty on the magnitude

•
$$J_{ ext{ridge}}\left(heta
ight) = rac{1}{n}(X heta - Y)^{ op}(X heta - Y) + \lambda \| heta\|^2$$
 $(\lambda > 0)$

- λ is a so-called "hyperparameter"
- Setting $abla_{ heta}J_{ ext{ridge}}\left(heta
 ight)=0$ we get $heta^*=\left(X^ op X+n\lambda I
 ight)^{-1}X^ op Y$
- (θ^* (here) always exists, and is always the unique optimal parameters.)
- (see recitation/hw for discussion about the offset.)

- Recap: Supervised Learning Setup, Terminology
- Ordinary Least Square Regression
 - Problem Formulation
 - Closed-form Solution (when well-defined)
 - When closed-form solution is not well-defined
 - Mathematically, Practically, Visually
- Regularization and Ridge Regression
- Hyperparameter and Cross-validation



```
Cross-validate(\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)
```



```
Cross-validate(\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)

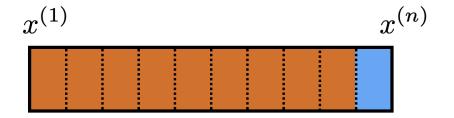
for i = 1 to k
```



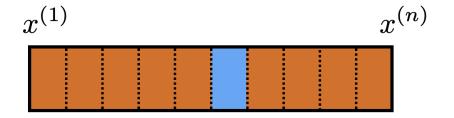
```
Cross-validate(\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)

for i = 1 to k
```

• • •



```
Cross-validate(\mathcal{D}_n, k)
   Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\dots,\mathcal{D}_{n,k} (of roughly equal size)
   for i = 1 to k
```

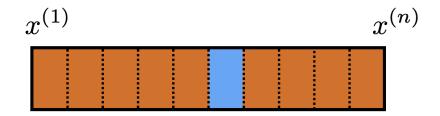


```
Cross-validate (\mathcal{D}_n, k)

Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

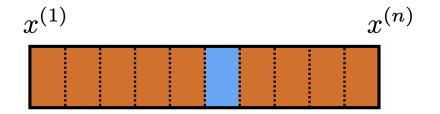
train h_i on \mathcal{D}_n \backslash \mathcal{D}_{n,i} (i.e. except chunk i)
```



```
Cross-validate (\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n \backslash \mathcal{D}_{n,i} (i.e. except chunk i) compute "test" error \mathcal{E}(h_i,\mathcal{D}_{n,i}) of h_i on \mathcal{D}_{n,i}
```



```
Cross-validate (\mathcal{D}_n, k)
Divide \mathcal{D}_n into k chunks \mathcal{D}_{n,1},\ldots,\mathcal{D}_{n,k} (of roughly equal size)

for i=1 to k

train h_i on \mathcal{D}_n \backslash \mathcal{D}_{n,i} (i.e. except chunk i) compute "test" error \mathcal{E}(h_i,\mathcal{D}_{n,i}) of h_i on \mathcal{D}_{n,i}

Return \frac{1}{k} \sum_{i=1}^k \mathcal{E}(h_i,\mathcal{D}_{n,i})
```

Comments on (cross)-validation

- good idea to shuffle data first
- a way to "reuse" data
- it's not to evaluate a hypothesis
- rather, it's to evaluate learning algorithm (e.g. hypothesis class choice, hyperparameters)
- Could e.g. have an outer loop for picking good hyperparameter or hypothesis class

https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform? embedded=true

We'd love to hear your thoughts.

Thanks!