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Optimization + first-principle physics
DARPA Robotics Competition

2015
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https://s3.amazonaws.com/media-p.slid.es/videos/1350152/isFL4k6b/lilly_excerpt.mp4
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https://www.youtube.com/embed/fn3KWM1kuAw?start=1&enablejsapi=1
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Recall: pollution prediction example 

Training data:
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Algorithm
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x , y ,… , x , y{( (1) (1)) ( (n) (n))}

What do we want? A good way to label new features

For example,  : For any  valid but is it any good?h x,h(x) = 1, 000, 000,

hypothesis
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set of  (or specifically for today, the set of hyperplanes)h

A linear regression hypothesis
:

h x; θ, θ =( 0) θ x+T θ0

  = [ θ1 θ2 ⋯ θd ] +

x1
x2

⋮
xd

θ0

parameters

data

Hypothesis class H :
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E (h) =test  L h x , y
n′
1 ∑i=n+1

n+n′ ( ( (i)) (i))

E (h) =train  L h x , y
n
1 ∑i=1

n ( ( (i)) (i))

Test error

Training error 

 new pointsn′

Squared loss

L h x , y =( ( (i)) (i)) (h x −( (i))  y  )(i) 2
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Recall lab1

def random_regress(X, Y, k): 
    n, d = X.shape 
 
    # generate k random hypotheses 
    ths = np.random.randn(d, k) 
    th0s = np.random.randn(1, k) 
 
    # compute the mean squared error of each hypothesis 
on the data set 
    errors = lin_reg_err(X, Y, ths, th0s) 
 
    # Find the index of the hypotheses with the lowest 
error 
    i = np.argmin(errors) 
 
    # return the theta and theta0 parameters that 
define that hypothesis 
    theta, theta0 = ths[:,i:i+1], th0s[:,i:i+1] 
    return (theta, theta0), errors[i]
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Linear regression: the analytical way

How about we just consider all hypotheses in our class and choose the one with

lowest training error?

We’ll see: not typically straightforward

But for linear regression with square loss: can do it!

In fact, sometimes, just by plugging in an equation!
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Append a "fake" feature of  1

h x; θ, θ =( 0) θ x+T θ0

  = [ θ1 θ2 ⋯ θd ] +

x1
x2

⋮
xd

θ0
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"center" the data

Don't want to deal with θ0

⇒
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"center" the data
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center the data

Temperature Population Pollution
Chicago 90 45 7.2
New York 20 32 9.5
Boston 35 100 8.4

Temperature Population Pollution
Chicago 41.66 -14 -1.66
New York -28.33 -27 1.133
Boston -13.33 41 0.033

⇒
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Assemble

X =

x1
(1)

⋮
x1
(n)

…

⋱
…

xd
(1)

⋮
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Y =
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Temperature Population Pollution
Chicago 41.66 -14 -1.66
New York -28.33 -27 1.133
Boston -13.33 41 0.033
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Now the training error:  
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Goal: find  to minimize θ J(θ)

Q: What kind of function is ? J(θ)

A: Quadratic function

Q: What does  look like?J(θ)

A: Typically, looks like a "bowl"

🥰

J(θ)  = (Xθ −
n

1
Y ) (Xθ −⊤ Y )

Objective function (training error)
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Typically,  "curves up" and is unique minimized at a point if

gradient at that point is zero

J(θ) = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

Set the gradient ∇ Jθ = set  0

When  is well defined, it's indeed guaranteed to be the unique minimizer of   )θ∗ J(θ

∇ J =θ

∂J/∂θ1

⋮
∂J/∂θd

= X Xθ −X Y
n
2 ( T T )

⇒ θ =∗ X X X Y( ⊤ )−1 ⊤
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 is only well-defined if  is invertibleθ =∗ X X X Y( ⊤ )
−1 ⊤ X X( ⊤ )

and  is invertible if and only if  is full column rankX X( ⊤ ) X

https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra
https://www.3blue1brown.com/topics/linear-algebra

a. either when <  , or

b. columns (features) in  have linear dependency

n d

X

So, we will be in trouble if  is not full column rank, which happens:X
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Case Example Objective Function
Looks Like

Optimal Parameters
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Quick Summary:

This 👈  formula is not well-defined

1. Typically,  is full column rankX

🥺🥰

θ =∗ X X X Y( ⊤ )
−1 ⊤

 looks like a bowlJ(θ)

a. either when <  , or

b. columns (features) in  have linear dependency

n d

X

2. When  is not full column rankX

 looks like a half-pipeJ(θ)

Infinitely many optimal hyperplanes gives the unique optimal hyperplane θ∗
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🥰🥺

Sometimes, noise can resolve the invertibility issue

How to choose among hyperplanes?

but still lead to undesirable results

Prefer  with small magnitude (less sensitive prediction when  changes slightly)θ x
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Add a square penalty on the magnitude

J (θ) =ridge  (Xθ −
n
1 Y ) (Xθ −⊤ Y ) + λ∥θ∥2

 is a so-called "hyperparameter"λ

Setting  we get ∇ J (θ) =θ ridge  0 θ =∗ X X + nλI X Y( ⊤ )−1 ⊤

(  (here) always exists, and is always the unique optimal parameters.)θ∗

(see recitation/hw for discussion about the offset.)

Ridge Regression
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Cross-validation
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Cross-validation
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Cross-validation

…
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Cross-validation
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Cross-validation
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Cross-validation
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Cross-validation
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Comments on (cross)-validation

good idea to shuffle data first
a way to "reuse" data
it's not to evaluate a hypothesis
rather, it's to evaluate learning algorithm (e.g. hypothesis class
choice, hyperparameters)
Could e.g. have an outer loop for picking good hyperparameter
or hypothesis class
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https://docs.google.com/forms/d/e/1FAIpQLSftMB5hSccgAbIAFmP_LuZt95w6KFx0x_R3uuzBP8WwjSzZeQ/viewform?
embedded=true

Thanks!
We'd love to hear

your .thoughts
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