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6.390 Intro to Machine Learning
Lecture 3: Gradient Descent Methods
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 Recap, motivation for gradient descent methods

« Gradient descent algorithm (GD)

= The gradient vector
= GD algorithm

= Gradient decent properties
o convex functions, local vs global min
« Stochastic gradient descent (SGD)

= SGD algorithm and setup
= GD vs SGD comparison
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Recap, motivation for gradient descent methods



Recall 2. When X is not full column rank

-~ a. either when n<d, or

1. Typically, X is full column rank b. columns (features) in X have linear dependency
 J(0) looks like a bowl o J(0) looks like a half-pipe
« 0" = (X'X) XY e This == formula is not well-defined

« 0* gives the unique optimal hyperplane e Infinitely many optimal hyperplanes
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. Typically, X is full column rank 2. When X is not full column rank

J(6) looks like a bowl + J(0) looks like a half-pipe
. -1
0" = (X X ) X'y .« This = formula is not well-defined

6* gives the unique optimal hyperplane o Infinitely many optimal hyperplanes

J(0) 7(0)
dq @@ BT AN &
: i,a" :

0,

Aio'l

0* can be costly to compute (lab2, Q2.7) « No way yet to obtain an optimal parameter

Want a more efficient and general method => gradient descent methods
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Gradient descent algorithm (GD)

The gradient vector



For f : R™ — R, its gradient V f : — R is defined at the point p = (z1,...,z,,) as:

Vfp) =

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved unless stated otherwise.




3. The gradient can be symbolic or numerical.

example:  f(z,y,2) = 22 +yd + 2

its symbolic gradient:

evaluating the symbolic gradient at a point gives a numerical gradient:

6
Vf£(3,2,1) =Vf(x,y,2) = [12]

($’y’z):(3’271) 1

just like a derivative can be a function or a number.




4. The gradient points in the direction of the (steepest) increase in the function value.
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Gradient descent algorithm (GD)

GD algorithm
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A single training data point

(z,y) = (3,6)

/()

(N

Want to fit a line (without offset) to

minimize the MSE: f(8) = (30 — 6)?
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Suppose we fit a line y = 1.5z

/

f(9)

[N

MSE could get better.

How to formalize this?
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Suppose we fit a line y = 1.5z

/

MSE could get better. How to?

Leveraging the gradient.

f0) 2 \

Vof = f'(6)

— 2[3(30 — 6)][p_s 5
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Suppose we fit a line y = 2.4x

MSE could get better. How to?

Leveraging the gradient.

f0) 2 I

Vof = f'(6)

— 2[3(39 —6)]]g=2.4
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initial guess learning rate,

hyperparameters of parameters  aka, step size

precision

1 Gradient-Descent (- n, f, V@f,. )

2

3
4
5
6

Initialize ©© =@,
Initialize t = 0
repeat

t =t + 1

oW = et=1 — pve f(OFD)
until f(@(‘t))—f(O(t_l))‘<16
Return o®
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Gradient-Descent ( O, n, f, Ve f,€ )

Initialize ©© =@,
Initialize t = 0
repeat

t=t + 1

o) = gt~ — pvg f(OU~)
until [£(O®)-f(O“ )| <e
Return O

level set
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Gradient-Descent ( O, n, f, Ve f,€ )

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

Ol = Q-1 _ pvg f(OF—1)
until |f(0Y)— f(@(t_l))‘ <e
Return @@

init
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Gradient-Descent ( O, n, f, Ve f,€ )
Tnitialize ©0 =@

1

2 init

3 Initialize t = 0 —
‘  repeat =
5 t =t + 1 (=N
6 0 = @t~1) _ pyg f(OF D) LA
until |£(0) /(O] < P
8 Return @O < —>0,

N
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Gradient-Descent ( O, n, f, Ve f,€ )

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = lt-1 _ nvg f(OF 1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init
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Gradient-Descent ( O, n, f, Ve f,€ )

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

0l = olt-1) _ yvg f(OF1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init

20



1 Gradient-Descent ( Ouit,n, f, Vo f, € )

SN O & W DN

N

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

ol = 0t-1 _ pvg f(O¢—1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init
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Gradient-Descent ( O, n, f, Ve f,€ )

Tnitialize ©0 =@
Initialize t = 0
repeat

t=t + 1

ol = 0t-1 _ pvg f(O¢—1)
until |f(0Y)— f(@(t_l))‘ <e
Return @)

init
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Gradient-Descent ( O, n, f, Ve f,€ )
Initialize ©© =@,
Initialize t = 0
repeat

t=t + 1

Ol = 0lt-1) _ pvg f(O¢—1)
until |f(@®)— f((—)(t_l))‘ <e
Return @)
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1 Gradient-Descent ( Ouwit,n, f, Vo f, € )
Tnitialize 0O =@
Initialize t = 0
repeat

t =t +1

ol = ot~ _pyg f(eLt-1)
until |[f(©9)— f(@“—l))( <e
Return o)

init

o NN O O = W DN

Q: what does this condition imply?

A: the gradient (at the current parameter nearly) is zero.

Other possible stopping criteria for line 7:

- Small parameter change: |©@® — ©¢1| < ¢, or
- Small gradient norm: ||V f(©@®)|| < € also imply the same "gradient close to zero"

25



Outline

Gradient descent algorithm (GD)

Gradient decent properties

convex functions, local vs global min
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When minimizing a function, we aim for a global minimizer.
gradient descent

m— can chieve this

(to arbitrary
At a global minimizer the gradient vector is the zero  precision)
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When minimizing a function, we aim for a global minimizer.

At a global minimizer <= {

the gradient vector is the zero

the objective function is convex

A function f is convex if any line segment connecting two points of the graph of f

lies above or on the graph.

e fisconcave if —f is convex.

« one can say a lot about optimization convergence for convex functions.

28



https:/ / shenshen.mit.edu/demos/convex.html



https://shenshen.mit.edu/demos/convex.html

Some examples

Convex functions

= 95 3 28 2 5 1 05 0

f = min(Ja], 10)




Gradient Descent Performance

o Assumptions:

= f is sufficiently "smooth"

» f1s convex

= f has at least one global minimum

= Run gradient descent for sufficient iterations

= 7 is sufficiently small
o Conclusion:

= Gradient descent converges arbitrarily close to a global minimum of f.
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Gradient Descent Performance

f is sufficiently "smooth"

if violated, may not have gradient,

can't run gradient descent
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Gradient Descent Performance

o Assumptions:

if violated, may get stuck at a saddle point
= fis sufficiently "smooth"

f is convex

f has at least one global minimum

Run gradient descent for sufficient iterations

n is sufficiently small

e Conclusion:

-200 1

-400

33



Gradient Descent Performance

« Assumptions: if violated:

= f is sufficiently "smooth" may not terminate/no

. minimum to converge to
= f 1S convex

Plot of f(x) = 2x - 3

= f has at least one global minimum

10f

= Run gradient descent for sufficient iterations |

0

f(x)

= 7 is sufficiently small :

e Conclusion:

-25

-100 -75 -50 -25 0.0 2.5 5.0 7.5 10.0

= Gradient descent converges arbitrarily close to a global minimum of f.
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Gradient Descent Performance

o Assumptions:

= f is sufficiently "smooth"
if violated:

= f 1S convex :
! see demo on next slide,

= f has at least one global minimum also lab / recitation/hw
= Run gradient descent for sufficient iterations

= 7 is sufficiently small
o Conclusion:

= Gradient descent converges arbitrarily close to a global minimum of f.

35



https:/ /shenshen.mit.edu/demos/gd.html



https://shenshen.mit.edu/demos/gd.html

Outline

Stochastic gradient descent (SGD)

SGD algorithm and setup
GD vs SGD comparison
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. L Y
training data
pl 2 |5
p2 |3 |6
p3 |4 |7
®
®

Fit a line (without offset) to the dataset, the MSE:

1
£(6) = 5 [(20 = 5)* + (30 — 6)” + (460 — 7)’]
3
f@) 2
1
X
0
0 1 2 3 4
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Suppose we fit a line y = 2.5z

(Y

4 / MSE get better

gradient can help

f(0)

b

Vof =

v

W

K

2(20 — 5) + 3(30 — 6) + 4(40 — 7))

7

39



f(9)
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o the MSE of a linear hypothesis:

e and its gradient w.r.t. 6:

Vof = 2[2(20 — 5) + 3(30 — 6) + 4(40 — 7)]

40



f(9)

‘\—;\

(e} = [\ w = ot (=] -~ [0}

L 1Y
pl |2 |5
p2 |3 |6
p3 4 |7

o the MSE of a linear hypothesis:

) = |G+ 30"

e and its gradient w.r.t. 6:

Vo = } B(2BEE) - 3(30 — 6) +4(40 — 7]
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Gradient of an ML objective

Using our example data set, . Using any dataset,
o the MSE of a linear hypothesis: « the MSE of a linear hypothesis:
i 1 < . N 2
F(0) =1 [(260 —5) + (30 — 6)> + (40 — 7)?] F(0) = = Z (eT;,;(w _ y@))
! n -
i 1=1
e and its gradient w.r.t. 0: e and its gradient w.r.t. 6:
2 & N
Vof = 212(20 — 5) +3(39 — 6) + 4460 — 7)] VIG) == (07:1;(’0 = y(z)) )
| n

1=1



Gradient of an ML objective

o the MSE of a linear hypothesis:

n

F0)= 3 (072 —4)

1=1

2

e and its gradient w.r.t. 6:
n

n
1=1

Vi) =2 3 (eTa;@) _ ym) ()

In general,

« An ML objective function is a finite sum
1 n
f0) == £i(0)
i=1
 and its gradient w.r.t. 0:

Vi) =V Y £0) = > A6)

{J (gradient of the sum) = (sum of the gradient)
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Gradient of an ML objective

In general,

« An ML objective function is a finite sum

 and its gradient w.r.t. 0:

V)= Z fi(6 Z V £i(6)

Costly!

Let's do stochastic gradient descent (on the board).

need to add n of them

each of these V f;(8) € R¢

44



Stochastic gradient descent

Stochastic

Gradient-Descent ( O, 1, f, Vo f, € )
ITnitialize 00 =@

Gradient-Descent ( Ounit,n, f, Ve f, € )
ITnitialize 00 =@

init init
Initialize t = 0 Initialize t = 0
repeat repeat
£t = t + 1 t =t + 1

randomly select 1 from {1,..,n}

@(t) — @(t_l) — T] @(t) _ @(t—l) t v @(t—l)
until ’f(@(t)) _ f(@(t—l)) <e - — n(t)Ve fi( )
Return @@ until |f(@®)— f(@(t‘l))‘ <e

Return @O

for a randomly picked data point ¢

45



Stochastic gradient descent performance

o Assumptions:

= f is sufficiently "smooth"

= fis convex

= f has at least one global minimum

= Run gradient descent for sufficient iterations

= 7 is sufficiently small and satisfies additional "scheduling" condition
« Conclusion: Yo m(t) =ooand > 2, n(t)? < oo

= Stochastic gradient descent converges arbitrarily close to a global minimum of f

with probability 1.

46



Compared with GD, SGD

is more "random"

may get us out of a local min

n is more efficient

47



Summary

« Most ML methods can be formulated as optimization problems.
« We won't always be able to solve optimization problems analytically (in closed-form).

« We won’t always be able to solve (for a global optimum) efficiently.

« We can still use numerical algorithms to good effect. Lots of sophisticated ones available.

o Introduce the idea of gradient descent in 1D: only two directions! But magnitude of step

is important.
o In higher dimensions the direction is very important as well as magnitude.

« GD, under appropriate conditions (most notably, when objective function is convex), can

guarantee convergence to a global minimum.

« SGD: approximated GD, more efficient, more random, and less guarantees.
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We'd love to hear
your thoughts.

Thanks!

49


https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?embedded=true
https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?usp=sf_link

