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This 👈  formula is not well-defined

1. Typically,  is full column rankX

🥺🥰

θ =∗ X X X Y( ⊤ )
−1 ⊤

 looks like a bowlJ(θ)

a. either when <  , or

b. columns (features) in  have linear dependency

n d

X

2. When  is not full column rankX

 looks like a half-pipeJ(θ)

Infinitely many optimal hyperplanes gives the unique optimal hyperplane θ∗

Recall
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This 👈  formula is not well-defined

1. Typically,  is full column rankX

🥺

θ =∗ X X X Y( ⊤ )
−1 ⊤

 looks like a bowlJ(θ)

2. When  is not full column rankX

 looks like a half-pipeJ(θ)

Infinitely many optimal hyperplanes gives the unique optimal hyperplane θ∗

🥺

 can be costly to compute (lab2, Q2.7)θ∗ No way yet to obtain an optimal parameter

Want a more efficient and general method => gradient descent methods 

🥰

5



Outline
Recap, motivation for gradient descent methods

Gradient descent algorithm (GD)

The gradient vector

GD algorithm

Gradient decent properties

convex functions, local vs global min 

Stochastic gradient descent (SGD)

SGD algorithm and setup

GD vs SGD comparison

6



For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved unless stated otherwise.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.
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∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

3. The gradient can be symbolic or numerical.

f(x, y, z) = x +2 y +3 zexample:

its symbolic gradient:

just like a derivative can be a function or a number.

evaluating the symbolic gradient at a point gives a numerical gradient:

∇f(x, y, z) =
2x
3y2

1

∇f(3, 2, 1) = ∇f(x, y, z) =
(x,y,z)=(3,2,1)

6
12
1
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4. The gradient points in the direction of the (steepest) increase in the function value.

 

cos(x) =
dx
d

x=−4
−sin(−4) ≈ −0.7568

 

cos(x) =
dx
d

x=5
−sin(5) ≈ 0.9589

f(x) = cos(x)

x
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Want to fit a line (without offset) to

minimize the MSE: f(θ) = (3θ − 6)2
A single training data point

(x, y) = (3, 6)
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MSE could get better.

How to formalize this?

Suppose we fit a line y = 1.5x
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∇ f =θ f (θ)′

f(θ) = (3θ − 6)2

= 2[3(3θ − 6)]∣θ=1.5

< 0

MSE could get better. How to?

Leveraging the gradient.

Suppose we fit a line y = 1.5x
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∇ f =θ f (θ)′

f(θ) = (3θ − 6)2

= 2[3(3θ − 6)]∣θ=2.4

> 0

MSE could get better. How to?

Leveraging the gradient.

Suppose we fit a line y = 2.4x
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hyperparameters
initial guess
of parameters

learning rate, 
aka, step size precision
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Q: what does this condition imply?

A: the gradient (at the current parameter nearly) is zero.

1
2
3
4
5
6
7

25

8

Other possible stopping criteria for line 7:  
- Small parameter change: , or
- Small gradient norm:   also imply the same "gradient close to zero"

∥Θ −(t) Θ ∥ <(t−1) ϵ

∥∇ f(Θ )∥ <Θ
(t) ϵ
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When minimizing a function, we aim for a global minimizer.

At a global minimizer the gradient vector is the zero

⇒

⇍

gradient descent
can achieve this
(to arbitrary
precision)
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the gradient vector is the zero
⇐

the objective function is convex 
{

A function  is convex if any line segment connecting two points of the graph of 

lies above or on the graph. 

f f

 is concave if  is convex.f −f

one can say a lot about optimization convergence for convex functions.

When minimizing a function, we aim for a global minimizer.

At a global minimizer

28



https://shenshen.mit.edu/demos/convex.html
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Some examples

Convex functions

Non-convex functions

161616 –14–14–14 –12–12–12 –10–10–10 –8–8–8 –6–6–6 –4–4–4 –2–2–2 222 444 666 888 101010 121212 141414 161616

–4–4–4

–2–2–2

222

444

666

888

101010

121212

141414

000

–4–4–4 –3.5–3.5–3.5 –3–3–3 –2.5–2.5–2.5 –2–2–2 –1.5–1.5–1.5 –1–1–1 –0.5–0.5–0.5 0.50.50.5 111 1.51.51.5 222 2.52.52.5 333

–2–2–2

222

444

666

888

101010

121212

141414

161616

181818

202020

222222

242424

000

222 –1.5–1.5–1.5 –1–1–1 –0.5–0.5–0.5 0.50.50.5 111 1.51.51.5 222 2.52.52.5

0.50.50.5

111

1.51.51.5

222

2.52.52.5

333

3.53.53.5

444

4.54.54.5

555

000
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimum of .

f

f

f

η

f

Gradient Descent Performance
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if violated, may not have gradient,
can't run gradient descent

Gradient Descent Performance

Assumptions:

 is sufficiently "smooth"

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimum of .

f

f

f

η

f
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if violated, may get stuck at a saddle point

or a local minimum

Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimum of .

f

f

f

η

f

Gradient Descent Performance
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if violated:
may not terminate/no
minimum to converge to

Gradient Descent Performance

Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimum of .

f

f

f

η

f
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small

Conclusion:

Gradient descent converges arbitrarily close to a global minimum of .

f

f

f

η

f

Gradient Descent Performance

if violated:
see demo on next slide,
also lab/recitation/hw
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https://shenshen.mit.edu/demos/gd.html
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Fit a line (without offset) to the dataset, the MSE: 

f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)
3
1

[ 2 2 2]

training data
p1 2 5
p2 3 6
p3 4 7

x y

38



Suppose we fit a line y = 2.5x f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ f =θ [2(2θ −3
2 5) + 3(3θ − 6) + 4(4θ − 7)]

gradient can help
MSE get better
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f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

∇ f =θ [2(2θ −3
2 5) + 3(3θ − 6) + 4(4θ − 7)]

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

p1 2 5
p2 3 6
p3 4 7

x y
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∇ f =θ [2(2θ −3
2 5) + 3(3θ − 6) + 4(4θ − 7)]

f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

the MSE of a linear hypothesis:

p1 2 5
p2 3 6
p3 4 7

x y

and its gradient w.r.t. :θ
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∇f(θ) = θ x − y x
n

2

i=1

∑
n

( ⊤ (i) (i)) (i)

Gradient of an ML objective

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

Using our example data set,

∇ f =θ [2(2θ −3
2 5) + 3(3θ − 6) + 4(4θ − 7)]

f(θ) = (2θ − 5) + (3θ − 6) + (4θ − 7)3
1 [ 2 2 2]

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ

Using any dataset,

f(θ) = θ x − y
n

1

i=1

∑
n

( ⊤ (i) (i))2
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Gradient of an ML objective

An ML objective function is a finite sum

and its gradient w.r.t. :θ

∇f(θ) = ∇( f (θ))
n

1

i=1

∑
n

i∇f(θ) = θ x − y x
n

2

i=1

∑
n

( ⊤ (i) (i)) (i) = ∇f (θ)
n

1

i=1

∑
n

i

In general, 

f(θ) = θ x − y
n

1

i=1

∑
n

( ⊤ (i) (i))2 f(θ) = f (θ)
n

1

i=1

∑
n

i

👋 (gradient of the sum) = (sum of the gradient)
👆

the MSE of a linear hypothesis:

and its gradient w.r.t. :θ
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Gradient of an ML objective

An ML objective function is a finite sum

and its gradient w.r.t. :θ

∇f(θ) = ∇( f (θ))
n

1

i=1

∑
n

i = ∇f (θ)
n

1

i=1

∑
n

i

In general, 

each of these ∇f (θ) ∈i Rd

need to add  of themn

Costly!

f(θ) = f (θ)
n

1

i=1

∑
n

i

Let's do stochastic gradient descent (on the board).
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Stochastic gradient descent

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i ≈ ∇f (Θ)i

for a randomly picked data point i
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Assumptions:

 is sufficiently "smooth" 

 is convex

 has at least one global minimum

Run gradient descent for sufficient iterations

 is sufficiently small and satisfies additional "scheduling" condition

Conclusion:

Stochastic gradient descent converges arbitrarily close to a global minimum of 

with probability 1.

f

f

f

η

f

Stochastic gradient descent performance

 and η(t) =∑t=1
∞ ∞ η(t) <∑t=1

∞ 2 ∞
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is more "random"

is more efficient 

may get us out of a local min

Compared with GD, SGD 

∇f(Θ) = ∇f (Θ)
n

1

i=1

∑
n

i ≈ ∇f (Θ)i
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Summary

Most ML methods can be formulated as optimization problems.

We won’t always be able to solve optimization problems analytically (in closed-form).

We won’t always be able to solve (for a global optimum) efficiently.

We can still use numerical algorithms to good effect.  Lots of sophisticated ones available.

Introduce the idea of gradient descent in 1D: only two directions!  But magnitude of step
is important.

In higher dimensions the direction is very important as well as magnitude.

GD, under appropriate conditions (most notably, when objective function is convex), can
guarantee convergence to a global minimum.

SGD: approximated GD, more efficient, more random, and less guarantees.
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https://docs.google.com/forms/d/e/1FAIpQLScj9i83AI8TuhWDZXSjiWzX6gZpnPugjGsH-i3RdrBCtF-opg/viewform?
embedded=true

Thanks!
We'd love to hear

your .thoughts
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