

6.390 Intro to Machine Learning

Lecture 4: Linear Classification

Shen Shen Feb 21, 2025 (11am, Room 10-250)

1

Recap:

"Learn" a model \longrightarrow

 $\mathcal{D}_{ ext{train}} \, \longrightarrow \,$

Supervised Learning Algorithm

Hypothesis class
Hyperparameters
Objective (loss) function
Regularization

 $egin{array}{ccccc} x & \in \mathbb{R}^d \ & \downarrow & & \ & \downarrow & & \ & \downarrow & & \ & y & \in \mathbb{R} \end{array}$

"Learn" a model \longrightarrow

train, optimize, learn, tune, adjusting/updating model parameters gradient based

"Use" a model

predict, test, evaluate, infer applying the learned model no gradients involved

Today:

4

{"Fish", "Grizzly", "Chameleon", ...}

Today:

image adapted from Phillip Isola

- Linear (binary) classifiers
 - to use: **separator**, **normal vector**
 - to learn: difficult! won't do
- Linear **logistic** (binary) classifiers
 - to use: **sigmoid**
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: **softmax**
 - to learn: one-hot encoding, cross-entropy loss

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

		linear regressor	linear binary classifier
	features	$x\in \mathbb{R}^d$	
	parameters	$ heta \in \mathbb{R}^d$	$, heta_{0}\in\mathbb{R}$
linea	r combination	$ heta^T x +$	$ heta_0 = z$
-	predict	z	$\int_{-\infty}^{\infty} 1 ext{if } z > 0$
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

- To *learn* a model, need a loss function.
- One natural loss choice:

$$egin{aligned} \mathcal{L}_{01}(g,a) &= \left\{egin{array}{ll} 0 & ext{if guess} = ext{actual} \ 1 & ext{otherwise} \end{array}
ight. \ &= \left\{egin{array}{ll} 0 & ext{if step}\left(heta^ op x^{(i)} + heta_0
ight) = y^{(i)} \ 1 & ext{otherwise} \end{array}
ight. \end{aligned}$$

• Very intuitive, and easy to evaluate 🕹

https://shenshen.mit.edu/demos/01lossleftonly.html

- Very intuitive, and easy to evaluate **
- Very hard to optimize (NP-hard) 🥹
 - "Flat" almost everywhere (zero gradient)
 - "Jumps" elsewhere (no gradient)

u/demos/01loss.html

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

	linear binary classifier	linear <i>logistic</i> binary classifier	
features	$x \in \mathbb{R}^d$		
parameters	$ heta \in \mathbb{R}^d, heta_0 \in \mathbb{R}$		
linear combination	$ heta^T x + heta_0 \; = z$		
predict	$\left\{egin{array}{ll} 1 & ext{if } z > 0 \ 0 & ext{otherwise} \end{array} ight.$	$\left\{egin{array}{ll} 1 & ext{if } \sigma(z) > 0.5 \ 0 & ext{otherwise} \end{array} ight.$	

Sigmoid: a smooth step function

• Predict positive

$$ext{if } \sigma(z) \ = rac{1}{1+e^{-z}} \ = rac{1}{1+e^{-(heta^ op x+ heta_0)}} > 0.5$$

- Sigmoid $\sigma(\cdot)$ outputs the *probability* or *confidence* that feature x has positive label.
- $\sigma(\cdot)$ between (0,1) vertically
- θ , θ_0 can flip, squeeze, expand, or shift the σ (·) curve *horizontally*

https://shenshen.mit.edu/demos/sigmoid.html

e.g. to predict whether to bike to school using a given logistic classifier

2 features: $g(x) = \sigma \left(\theta^{\top} x + \theta_0\right)$ = $\frac{1}{1 + \exp\left\{-\left(\theta^{\top} x + \theta_0\right)\right\}}$ 1 feature: $g(x) = \sigma (\theta x + \theta_0)$ = $\frac{1}{1 + \exp \{-(\theta x + \theta_0)\}}$ g(x)g(x)0.5 x_2 Temperature (C) Temperature (C) Temperature (C) linear logistic classifier still results in the linear separator $\theta^T x + \theta_0 = 0$

image credit: Tamara Broderick

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

Recall, the labels $y \in \{+1, 0\}$

 $\mathcal{L}_{ ext{nll}}$ (guess, actual)

$$= -[\text{ actual } \cdot \log(\text{ guess }) + (1 - \text{ actual }) \cdot \log(1 - \text{ guess })]$$

$$=-\left[y\log g+(1-y)\log\left(1-g
ight)
ight]$$

$$g(x) = \sigma \left(heta x + heta_0
ight)$$

If
$$y = 1$$

$$g(x) = \sigma \left(heta x + heta_0
ight)$$

$$\mathcal{L}_{ ext{nll}}$$
 (guess, actual)

$$= - \left[y \log g + (1 - y) \log (1 - g) \right]$$

$$=-\log g$$

If
$$y = 0$$

$$g(x) = \sigma \left(heta x + heta_0
ight)$$

$$\mathcal{L}_{ ext{nll}}$$
 (guess, actual)

$$= -\left[y \log g + (1-y) \log (1-g)\right]$$

$$= -\left[\log\left(1 - g\right)\right]$$

$$egin{aligned} \mathcal{L}_{ ext{nll}} \ (& ext{guess, actual }) \ & = - \left[\chi \log g + (1-y) \log (1-g)
ight] \ = - \log g \end{aligned}$$

https://shenshen.mit.edu/demos/nlloverfit.html

	linear	linear	linear <i>logistic</i>
	regressor	binary classifier	binary classifier
features		$x \in \mathbb{R}^d$	
parameters		$ heta \in \mathbb{R}^d, heta_0 \in$	
linear combo	$ heta^T x + heta_0 \;\; = z$		
predict	z	$\left\{ egin{array}{ll} 1 & ext{if } z>0 \ 0 & ext{otherwise} \end{array} ight.$	$\left\{egin{array}{ll} 1 & ext{if } g = \sigma(z) > 0.5 \ 0 & ext{otherwise} \end{array} ight.$
loss	$(g-y)^2$	$\left\{ egin{array}{ll} 0 & ext{if } g=a \ 1 & ext{otherwise} \end{array} ight.$	$-\left[y\log g + (1-y)\log\left(1-g\right)\right]$
optimize via	closed-form or gradient descent	NP-hard to learn	gradient descent onlyneed regularization to not overfit

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

 $\sigma(z)$: model's confidence the input x is a hot-dog

 $1 - \sigma(z)$: model's confidence the input x is not a hot-dog

$$egin{array}{cccc} heta^Tx+ heta_0 \ x & \longrightarrow \end{array} z \in \mathbb{R} & \longrightarrow \end{array}$$

$$\sigma(z) = rac{1}{1 + \exp(-z)}$$

learned scalar "summary" of "hot-dog-ness"

$$=rac{\exp(z)}{1+\exp(z)} \;= rac{\exp(z)}{\exp(0)+\exp(z)}$$

fixed baseline of "non-hot-dog-ness"

if we want to predict {hot-dog, pizza, pasta, salad}

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

if we want to predict {hot-dog, pizza, pasta, salad}

	linear logistic binary classifier	one-out-of- K classifier
training data	$x\in\mathbb{R}^d,y\in\{0,1\}$	$x \in \mathbb{R}^d, y: K$ -dimensional one-hot
parameters	$ heta \in \mathbb{R}^d, heta_0 \in \mathbb{R}$	$ heta \in \mathbb{R}^{d imes K},\; heta_0 \in \mathbb{R}^K$
linear combo	$ heta^T x + heta_0 = z \in \mathbb{R}$	$ heta^T x + heta_0 \ = z \in \mathbb{R}^K$
predict	$\sigma(z) = rac{\exp(z)}{\exp(0) + \exp(z)}$	$\operatorname{softmax}(z) = \left[egin{array}{c} \exp{(z_1)} / \sum_i \exp{(z_i)} \ dots \ \exp{(z_K)} / \sum_i \exp{(z_i)} \end{array} ight]$
	positive if $\sigma(z)>0.5$	category corresponding to the largest entry in $\operatorname{softmax}(z)$

- Linear (binary) classifiers
 - to use: separator, normal vector
 - to learn: difficult! won't do
- Linear logistic (binary) classifiers
 - to use: sigmoid
 - to learn: negative log-likelihood loss
- Multi-class classifiers
 - to use: softmax
 - to learn: one-hot encoding, cross-entropy loss

One-hot encoding:

- Encode the K classes as an \mathbb{R}^K vector, with a single 1 (hot) and 0s elsewhere.
- Generalizes from {0,1} binary labels

$$g = \operatorname{softmax}(\cdot)$$

true label *y*

$$egin{aligned} & \operatorname{loss} \mathcal{L}_{\operatorname{nllm}}(g,y) \ & = -\sum_{\mathrm{k}=1}^{\mathrm{K}} y_{\mathrm{k}} \cdot \log \left(g_{\mathrm{k}}
ight) \end{aligned}$$

$$g = \operatorname{softmax}(\cdot) \qquad \qquad = -\sum_{k=1}^K y_k \cdot \log(g_k)$$

$$= -\sum_{k=1}^K y_k \cdot \log(g_k)$$

 $[0,0,1,0,0,0,0,0,\dots]$

Negative log-likelihood K – classes loss (aka, cross-entropy)

g: softmax output $g_k:$ probability or confidence in class k $\mathcal{L}_{ ext{nllm}}(g,y) = -\sum_{k=1}^K y_k \cdot \log{(g_k)}$ y: one-hot encoding label $y_k:$ either 0 or 1

- Generalizes negative log likelihood loss $\mathcal{L}_{\mathrm{nll}}(g,y) = -\left[y\log g + (1-y)\log\left(1-g\right)\right]$
- Appears as summing *K* terms, but
- for a given data point, only the term corresponding to its true class label matters.

Classification

Image classification played a pivotal role in kicking off the current wave of AI enthusiasm.

Summary

- Classification: a supervised learning problem, similar to regression, but where the output/label is in a discrete set.
- Binary classification: only two possible label values.
- Linear binary classification: think of θ and θ_0 as defining a d-1 dimensional hyperplane that **cuts** the d-dimensional feature space into two half-spaces.
- 0-1 loss: a natural loss function for classification, BUT, hard to optimize.
- Sigmoid function: motivation and properties.
- Negative-log-likelihood loss: smoother and has nice probabilistic motivations. We can optimize via (S)GD.
- Regularization is still important.
- The generalization to multi-class via (one-hot encoding, and softmax mechanism)
- Other ways to generalize to multi-class (see hw/lab)

https://docs.google.com/forms/d/e/1FAIpQLSfG1vnfaOvy8jugeVHrJWJQB-_15IWBq683-XI8zlAJf6YZNg/viewform?embedded=true

We'd love to hear your thoughts.

Thanks!