
https://introml.mit.edu/

Intro to Machine Learning
Lecture 5: Features, Neural Networks I

Shen Shen

Feb 28, 2025
11am, Room 10-250

1

https://introml.mit.edu/

linear regressor
Recap:

the regressor is linear in the feature x

y = θ x+⊤ θ0

2

z = θ x+⊤ θ0
{x : θ x+⊤ θ >0 0}

{x : θ x+⊤ θ <0 0}

linear classifier
Recap:

separator

{x : θ x+⊤ θ =0 0}

the separator is linear in the feature x

3

{x : σ(θ x+⊤ θ) >0 0.5}

{x : σ(θ x+⊤ θ) <0 0.5}

linear logistic classifier

g(x) = σ θ x+ θ(⊤
0)

Recap:

separator

the separator is linear in the feature x

{x : θ x+⊤ θ =0 0}

4

Linear classification played a pivotal role in kicking off the first wave of AI enthusiasm.

👆

5

6

7

👇

8

Not linearly separable.

Linear tools cannot solve interesting tasks.

Linear tools cannot, by themselves, solve interesting tasks.

XOR dataset

9

feature engineering 👉

👈 neural networks

10

Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices

11

Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices

12

old/raw/
original
features
x ∈ Rd ⟶ new features

ϕ(x) ∈ Rd′

non-linear in x

linear in ϕ

⟶

non-linear
transformation

θ ϕ (x) +1 1 θ ϕ (x) +2 2 … θ ϕ (x)d′ d′

13

Linearly separable in spaceϕ(x) = x2

Not linearly separable in spacex

−3 −2 −1 0 1 2 3 4 5 6

14

7 8 9
x

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
ϕ(x)

transform via ϕ(x) = x2⇓

−3 −2 −1 0 1 2 3 4 5 6 7

15

8 9
x

Linearly separable in space, e.g. predict positive if ϕ(x) = x2 ϕ ≥ 3

Non-linearly separated in space, e.g. predict positive if x x ≥2 3

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
ϕ(x)

⇓ transform via ϕ(x) = x2

{x : x +1
2 x >2

2 10}

{x : x +1
2 x <2

2 10}

= x1
2

ϕ2

z = ϕ +1 ϕ2

= x2
2

ϕ1 x1

x2

z = x +1
2 x2

2

16

training data

p1 -2 5
p2 1 2
p3 3 10

x y

⇒

transform via
ϕ(x) = x2

training data

p1 4 5
p2 1 2
p3 9 10

ϕ y

17

training data

p1 -2 5
p2 1 2
p3 3 10

x y

⇒

y = ϕ+ 1

training data

p1 4 5
p2 1 2
p3 9 10

ϕ y

18

= x +2 1

1,x ,x ,x ,x x ,x ,x ,x x ,x x ,x1 2 1
2

1 2 2
2

1
3

1
2
2 1 2

2
2
3

1,x ,x ,x ,x x ,x1 2 1
2

1 2 2
2

1,x ,x1 2

1 1

systematic polynomial features construction

d = 1 d = 2

k = 0

k = 1

19

k = 2

k = 3
…

Elements in the basis are the monomials of original features raised up to power k
With a given and a fixed , the basis is fixed. d k

1,x1

1,x ,x1 1
2

1,x ,x ,x1 1
2

1
3

x ,x1 2x1

9 data points; each data point has a feature label
generated from green dashed line

x ∈ R, y ∈ R

x

y

Learn 2 parameters for linear function

k = 1

h(x; θ) = θ +0 θ x1

20

x

y

Choose

New features

Learn 3 parameters for quadratic function

k = 2

ϕ = [1;x;x]2

h(x; θ) = θ +0 θ x+1 θ x2
2

21

y

x

Choose

New features

Learn 6 parameters for degree-5 polynomial

function

k = 5

ϕ = [1;x;x ;x ;x ;x]2 3 4 5

h(x; θ) = θ +0 θ x+1 θ x +2
2 θ x +3

3 θ x +4
4 θ x5

5

22

k = 7 k = 8 k = 10

23

Underfitting Appropriate model Overfitting

high error on train set

high error on test set

low error on train set

low error on test set

low error on train set

high error on test set

k = 1 k = 2 k = 10

24

 a hyperparameter that determines the capacity (expressiveness) of the hypothesis class.

Models with many rich features and free parameters tend to have high capacity but also

greater risk of overfitting.

How to choose Validation/cross-validation.

k :

k?

Underfitting Appropriate model Overfitting

k = 1 k = 2 k = 10

25

Similar overfitting can happen in classification
Using polynomial features of order 3

26

Quick summary:

Linear models are mathematically and algorithmically convenient but not

expressive enough -- by themselves -- for most jobs.

We can express really rich hypothesis classes by performing a fixed non-linear

feature transformation first, then applying our linear regression or classification

methods.

Can think of fixed transformation as "adapters", enabling us to use old tools in

broader situations.

Standard feature transformations: polynomials, absolute-value functions.

For a significant period, the essence of machine learning revolved around feature

engineering—manually designing transformations to extract useful representations.

27

Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices

28

leveraging nonlinear transformations ϕ x ;x =([1 2]) 1; ∣x − x ∣[1 2]transform via

👆

importantly, linear in , non-linear in ϕ x

29

Outlined the fundamental concepts of neural networks:

} expressiveness

efficient learning

 Nonlinear feature transformation

"Composing" simple transformations

Backpropagation

30

"Composing" simple transformations

31

σ =1 σ(5x −1 5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

Two epiphanies:

nonlinear transformation empowers linear tools
"composing" simple nonlinearities amplifies such effect

some
appropriately
weighted sum

32

Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices
👋 heads-up:
all neural network diagrams focus on a single data point

33

A neuron:

: what the algorithm learnsw

A neuron:

: -dimensional inputx d

a = f(z)…

x1

x2

xd

x = Σ

34

w1

wd

…

w2

f(⋅)
= w xT
z

: post-activation outputa

: activation functionf

: weights (i.e. parameters)w

: pre-activation outputz

: what we engineers choosef

= f(w x)T

: scalarz

: scalara

Choose activation f(z) = z

learnable parameters (weights)

e.g. linear regressor represented as a computation graph

…

x1

x2

xd

w1

wd

= z= w xT…
x =

w2

Σ

35

f(⋅)z g

Choose activation f(z) = σ(z)

learnable parameters (weights)

e.g. linear logistic classifier represented as a computation graph

…

x1

x2

xd

w1

wd

= σ(z)= w xT…

w2

Σ f(⋅)

36

z gx =

…

x1

x2

xd

a1Σ f(⋅)z1

37

…

Σ f(⋅)z2 a2

amΣ f(⋅)zm

A layer:

learnable weights

A layer:

(# of neurons) = (layer's output dimension).

typically, all neurons in one layer use the same

activation (if not, uglier algebra).

typically fully connected, where all are

connected to all meaning each influences

every eventually.

typically, no "cross-wiring", meaning e.g.

won't affect (the output layer may be an

exception if softmax is used.)

f

xi

z ,j xi

aj

z1

a .2

Σ f(⋅)

38

…

layer

linear combo activations

A (fully-connected, feed-forward) neural network:

…

x1

x2

xd

input

…
…

layer

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)Σ f(⋅)

Σ f(⋅)

neuron

learnable
weights

We choose:

activation in each layerf

of layers
of neurons in each layer

hidden output

σ =1 σ(5x −1 5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

some appropriate
weighted sum

recall this example

39

x1

x2

1

Σ f(⋅)

Σ

40

f(⋅)

Σ f(⋅) f(⋅) = σ(⋅)

 identity functionf(⋅)

it can be represented as

Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices
👋 heads-up:
all neural network diagrams focus on a single data point

41

Hidden layer activation function choicesf

 used to be the most popular

firing rate of a neuron

elegant gradient

σ

σ (z) =′ σ(z) ⋅ (1 − σ(z))

ReLU(z) = { 0
z

 if z < 0
 otherwise

= max(0, z)

= max(0,w x)T

very simple function form (so is the gradient).

nowadays, default choice:

42

compositions of ReLU(s) can be quite expressive

in fact, asymptotically, can approximate any function!

image credit: Phillip Isola
43

+ =

or give arbitrary decision boundaries!

44

https://shenshen.mit.edu/demos/2layers.html

45

https://shenshen.mit.edu/demos/2layers.html

neurons, activation, and loss depend on the high-level goal.

typically straightforward.

Multi-class setup: if predict one and only one class out of possibilities, then

last layer: neurons, softmax activation, cross-entropy loss

K

K

other multi-class settings, see lab.

output layer design choices

e.g., say classesK = 5

input x hidden
layer(s)

…

output layer

−1.0
−0.5
0.0
0.5
1.0

46

0.058
0.096
0.158
0.260
0.429

softmax z(j)

=
exp z∑i=1

4 (i)

exp z(j)

Width: # of neurons in layers

Depth: # of layers

Typically, increasing either the width or depth (with non-linear activation)

makes the model more expressive, but it also increases the risk of overfitting.

However, in the realm of neural networks, the precise nature of this relationship remains an
active area of research—for example, phenomena like the double-descent curve and scaling laws

47

(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/

48

https://playground.tensorflow.org/

49

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/p0PqpHf0/390_theme.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1146306/nnYemq2d/390_theme2.mp4

Summary
Linear models are mathematically and algorithmically convenient but not expressive

enough -- by themselves -- for most jobs.

We can express really rich hypothesis classes by performing a fixed non-linear feature

transformation first, then applying our linear methods. But this can get tedious.

Neural networks are a way to automatically find good transformations for us!

Standard NNs have layers that alternate between parameterized linear transformations

and fixed non-linear transforms (but many other designs are possible.)

Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu.

Typical output transformations for classification are as we've seen: sigmoid, or softmax.

50

https://forms.gle/HnNqPizhMoNNSyMF7

Thanks!
We'd love to hear

your .thoughts

51

https://forms.gle/HnNqPizhMoNNSyMF7
https://forms.gle/HnNqPizhMoNNSyMF7

