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linear regressor 
Recap:

the regressor is linear in the feature x

y = θ x+⊤ θ0
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z = θ x+⊤ θ0
{x : θ x+⊤ θ >0 0}

{x : θ x+⊤ θ <0 0}

linear classifier
Recap:

separator

{x : θ x+⊤ θ =0 0}

the separator is linear in the feature x
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{x : σ(θ x+⊤ θ ) >0 0.5}

{x : σ(θ x+⊤ θ ) <0 0.5}

linear logistic classifier

g(x) = σ θ x+ θ( ⊤
0)

Recap:

separator

the separator is linear in the feature x

{x : θ x+⊤ θ =0 0}
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Linear classification played a pivotal role in kicking off the first wave of AI enthusiasm.

👆
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👇
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Not linearly separable.

Linear tools cannot solve interesting tasks.

Linear tools cannot, by themselves, solve interesting tasks.

XOR dataset
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feature engineering 👉

👈 neural networks
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Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices
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old/raw/
original
features 
x ∈ Rd ⟶ new features 

ϕ(x) ∈ Rd′

non-linear in x

linear in ϕ

⟶

non-linear
transformation

θ ϕ (x) +1 1 θ ϕ (x) +2 2 … θ ϕ (x)d′ d′
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Linearly separable in  spaceϕ(x) = x2

Not linearly separable in  spacex

−3 −2 −1 0 1 2 3 4 5 6
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7 8 9
x

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
ϕ(x)

transform via ϕ(x) = x2⇓



−3 −2 −1 0 1 2 3 4 5 6 7
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8 9
x

Linearly separable in  space, e.g. predict positive if ϕ(x) = x2 ϕ ≥ 3

Non-linearly separated in  space, e.g. predict positive if  x x ≥2 3

−3 −2 −1 0 1 2 3 4 5 6 7 8 9
ϕ(x)

⇓ transform via ϕ(x) = x2



{x : x +1
2 x >2

2 10}

{x : x +1
2 x <2

2 10}

= x1
2

ϕ2

z = ϕ +1 ϕ2

= x2
2

ϕ1 x1

x2

z = x +1
2 x2

2
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training data

p1 -2 5
p2 1 2
p3 3 10

x y

⇒

transform via
ϕ(x) = x2

training data

p1 4 5
p2 1 2
p3 9 10

ϕ y
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training data

p1 -2 5
p2 1 2
p3 3 10

x y

⇒

y = ϕ+ 1

training data

p1 4 5
p2 1 2
p3 9 10

ϕ y
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systematic polynomial features construction

d = 1 d = 2

k = 0

k = 1
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k = 2

k = 3
…

Elements in the basis are the monomials of original features raised up to power k
With a given  and a fixed , the basis is fixed. d k

1,x1

1,x ,x1 1
2

1,x ,x ,x1 1
2

1
3

x ,x1 2x1



9 data points; each data point has a feature   label 
generated from green dashed line

x ∈ R, y ∈ R

x

y

Learn 2 parameters for linear function

k = 1

h(x; θ) = θ +0 θ x1
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x

y

Choose 

New features 

Learn 3 parameters for quadratic function

k = 2

ϕ = [1;x;x ]2

h(x; θ) = θ +0 θ x+1 θ x2
2
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y

x

Choose 

New features 

Learn 6 parameters for degree-5 polynomial

function

k = 5

ϕ = [1;x;x ;x ;x ;x ]2 3 4 5

h(x; θ) = θ +0 θ x+1 θ x +2
2 θ x +3

3 θ x +4
4 θ x5

5
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k = 7 k = 8 k = 10
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Underfitting Appropriate model Overfitting

high error on train set

high error on test set

low error on train set

low error on test set

low error on train set 

high error on test set

k = 1 k = 2 k = 10
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 a hyperparameter that determines the capacity (expressiveness) of the hypothesis class.

Models with many rich features and free parameters tend to have high capacity but also

greater risk of overfitting.

How to choose  Validation/cross-validation.

k :

k?

Underfitting Appropriate model Overfitting

k = 1 k = 2 k = 10
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Similar overfitting can happen in classification
Using polynomial features of order 3
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Quick summary:

Linear models are mathematically and algorithmically convenient but not

expressive enough -- by themselves -- for most jobs.

We can express really rich hypothesis classes by performing a fixed non-linear

feature transformation first, then applying our linear regression or classification

methods.

Can think of fixed transformation as "adapters", enabling us to use old tools in

broader situations. 

Standard feature transformations: polynomials, absolute-value functions.

For a significant period, the essence of machine learning revolved around feature

engineering—manually designing transformations to extract useful representations.
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leveraging nonlinear transformations ϕ x ;x =([ 1 2]) 1; ∣x − x ∣[ 1 2 ]transform via

👆

importantly, linear in , non-linear in ϕ x
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Outlined the fundamental concepts of neural networks:

} expressiveness

efficient learning

 Nonlinear feature transformation

"Composing" simple transformations

Backpropagation 
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"Composing" simple transformations
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σ =1 σ(5x −1 5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

Two epiphanies:  

nonlinear transformation empowers linear tools
"composing" simple nonlinearities amplifies such effect

some
appropriately
weighted sum
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Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices
👋 heads-up:
all neural network diagrams focus on a single data point
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A neuron:

: what the algorithm learnsw

A neuron:

: -dimensional inputx d

a = f(z)…

x1

x2

xd

x = Σ
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w1

wd

…

w2

f(⋅)
= w xT
z

: post-activation outputa

: activation functionf

: weights (i.e. parameters)w

: pre-activation outputz

: what we engineers choosef

= f(w x)T

: scalarz

: scalara



Choose activation f(z) = z

learnable parameters (weights)

e.g. linear regressor represented as a computation graph

…

x1

x2

xd

w1

wd

= z= w xT…
x =

w2

Σ
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Choose activation f(z) = σ(z)

learnable parameters (weights)

e.g. linear logistic classifier represented as a computation graph

…

x1

x2

xd

w1

wd

= σ(z)= w xT…

w2

Σ f(⋅)
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z gx =



…

x1

x2

xd

a1Σ f(⋅)z1
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…

Σ f(⋅)z2 a2

amΣ f(⋅)zm

A layer:

learnable weights

A layer:

(# of neurons) = (layer's output dimension).

typically, all neurons in one layer use the same

activation  (if not, uglier algebra).

typically fully connected, where all  are

connected to all  meaning each  influences

every  eventually.

typically, no "cross-wiring", meaning e.g. 

won't affect  (the output layer may be an

exception if softmax is used.)

f

xi

z ,j xi

aj

z1

a .2



Σ f(⋅)
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…

layer

linear combo activations

A (fully-connected, feed-forward) neural network: 

…

x1

x2

xd

input

…
…

layer

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)

Σ f(⋅)Σ f(⋅)

Σ f(⋅)

neuron

learnable
weights

We choose:

activation  in each layerf

# of layers
# of neurons in each layer

hidden output



σ =1 σ(5x −1 5x +2 1)

σ =2 σ(−5x +1 5x +2 1)

some appropriate
weighted sum

recall this example
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x1

x2

1

Σ f(⋅)

Σ
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f(⋅)

Σ f(⋅) f(⋅) = σ(⋅)

 identity functionf(⋅)

it can be represented as



Outline
Systematic feature transformations

Engineered features

Polynomial features

Expressive power

Neural networks

Terminologies

neuron, activation function, layer, feedforward network

Design choices
👋 heads-up:
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Hidden layer activation function  choicesf

 used to be the most popular

firing rate of a neuron

elegant gradient 

σ

σ (z) =′ σ(z) ⋅ (1 − σ(z))

ReLU(z) = { 0
z

 if z < 0
 otherwise 

= max(0, z)

= max(0,w x)T

very simple function form (so is the gradient).

nowadays, default choice:
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compositions of ReLU(s) can be quite expressive

in fact, asymptotically, can approximate any function! 

image credit: Phillip Isola
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+ =

or give arbitrary decision boundaries!
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https://shenshen.mit.edu/demos/2layers.html
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# neurons, activation, and loss depend on the high-level goal. 

typically straightforward.

Multi-class setup: if predict one and only one class out of  possibilities, then

last layer:  neurons, softmax activation, cross-entropy loss

K

K

other multi-class settings, see lab.

output layer design choices

e.g., say  classesK = 5

input x hidden
layer(s)

…

output layer

−1.0
−0.5
0.0
0.5
1.0

46

0.058
0.096
0.158
0.260
0.429

softmax z( j )

=
exp z∑i=1

4 ( i)

exp z( j )



Width: # of neurons in layers 

Depth: # of layers

Typically, increasing either the width or depth (with non-linear activation)

makes the model more expressive, but it also increases the risk of overfitting.

However, in the realm of neural networks, the precise nature of this relationship remains an
active area of research—for example, phenomena like the double-descent curve and scaling laws
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(The demo won't embed in PDF. But the direct link below works.)

https://playground.tensorflow.org/
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https://s3.amazonaws.com/media-p.slid.es/videos/1146306/p0PqpHf0/390_theme.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1146306/nnYemq2d/390_theme2.mp4


Summary
Linear models are mathematically and algorithmically convenient but not expressive

enough -- by themselves -- for most jobs.

We can express really rich hypothesis classes by performing a fixed non-linear feature

transformation first, then applying our linear methods. But this can get tedious.

Neural networks are a way to automatically find good transformations for us!

Standard NNs have layers that alternate between parameterized linear transformations

and fixed non-linear transforms (but many other designs are possible.)

Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu.

Typical output transformations for classification are as we've seen: sigmoid, or softmax.
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https://forms.gle/HnNqPizhMoNNSyMF7

Thanks!
We'd love to hear

your .thoughts
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