https:/ /introml.mit.edu/

6.390 Intro to Machine Learning

Lecture 5: Features, Neural Networks |

Shen Shen
Feb 28, 2025
11am, Room 10-250

https://introml.mit.edu/

Recap:

Pollution level

linear regressor

Satellite reading

y=0"x+6,

the regressor is linear in the feature

Recap:
linear classifier

{z:0"z+6, >0}

T2

separator

{z:0'z+ 6y =0}

I1

{CE:HT£B—|-9()<O}

the separator is linear in the feature z

Recap:

linear logistic classifier {z:0(0"z+6y) > 0.5}

9(5’3)% =0 (HT“” + ‘90) separator

{x:0(0"z46)) <0.5}

the separator is linear in the feature z

Linear classification played a pivotal role in kicking off the first wave of Al enthusiasm.

~25 years ~25 years

< > < > N

Perceptrons, PDP book,

. A 1958 1986
enthusiasm

Krizhevsky,
Sutskever,
Hinton, 2012

Minsky and Al winter,
Papert, 1969 2000

1960 1970 1980 1990 2000 2010 2020 time

http://www.ecse.rpi.edu/homepages/nagy/PDF_chrono/
2011 Nagy Pace FR.pdf. Photo by George Nagy

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.335.3398&rep=repl &type=pdf

NEW NAVYDEVIGE|

—— O — - W A W A

Psychologist Shows Emb I_'YO‘
of Computer Designed to
Read and Grow Wiser

WASHINGTON, July. 7 (UPI)
—The Navy revealed the em-
bryo of an electronic computer

today that it expects will be
able to walk, talk, see, write,
reproduce itself and be con-
scious of its existence,

Jauctea UE“u@OBUARS HTHAN Lans—..)
said ‘the machine would be the
lﬂrst device to think as the hu-

Iman brain. As do human be-

L

|said,

1958 New York

Times...

Dr. R«
psycholog
Aer onaut; today’'s demonstration, the
falo, Saidiﬁsqﬁ:;esﬁigagggd ﬁ'ﬁh Jeft
fired to ti hgm side o

cal space Leams by Doing

1 the first fifty trials, the
Wltho'h‘me made no distinction be-
en them. It then started
N stering a “Q"” for the left
' ne res. ,
Rosenblatt said he could
i &ned only in highly technical
mecnanls“?s. But he said the computer

res and “O” for the right
WOUId be.‘;in why the machine
undergone a ‘“self-induced
ing' recoglge in the wiring diagram.”

i e first Perceptron will
lts surrd: about 1,000 electronic
human trociation cells” recelving

trical impulses from an eye-

duce themselves on an assembly
line and which would be con-
scious of their existence,

The “l scanning device with 400
to-cells. The human brain
rememnsal 10,000,000,000 responsive

cells, including 100,000,000 con-
nections with the eyes,

enthusiasm

~25 years ~25 years

< > < pe A\
Perceptrons, PDP book,
A 1958 1986

Krizhevsky,
Sutskever,
Hinton, 2012

Minsky and Al winter,
Papert, 1969 2000

1960 1970 1980 1990 2000 2010 2020

time

XOR dataset
2
L St S R
. -
) -1 1 2
i | |
M | |

Not linearly separable.

L] "y . e

Linear tools cannot, by themselves, solve interesting tasks.

\ml

~25 years ~25 years

< > < > A
Perceptrons, PDP book,
1958 1986

enthusiasm

“ neural networks

Sutskever,

:)) Hinton, 2012
feature engineering <

Minsky and Al winter,
Papert, 1969 2000

1960 1970 1980 1990 2000 2010 2020

time

10

Outline

 Systematic feature transformations

= Engineered features
= Polynomial features

= Expressive power
» Neural networks
= Terminologies
o neuron, activation function, layer, feedforward network

= Design choices

11

Outline

» Systematic feature transformations

= Engineered features
= Polynomial features

= Expressive power
e Neural networks
= Terminologies
o neuron, activation function, layer, feedforward network

= Design choices

12

old /raw/
original
features
r € R?

non-linear
transformation

—

new features
$(x) € RY

non-linear in

linear in ¢

01 d1 (CB) + 0509 (CIZ) + ...0p Qg (CB)

13

Not linearly separable in z space

A\ 4

Linearly separable in ¢(z) = z* space

A\ 4

14

Non-linearly separated in z space, e.g. predict positive if z* > 3

3 2 1 0 1 2 3 4 5 6 7 8 9
T
l} transform via ¢(z) = z*
| | | | | | | | | | N
3 -2 -1 0 1 2 3 4 5 6 7 8 9
()

Linearly separable in ¢(z) = z* space, e.g. predict positive if ¢ > 3

15

{z: 2]+ x5 > 10}

&
-+

+ o4y

16

10 4

| training data ¢
o z |y
8 —pl |-2
p2 (12
p3 |13 |10
51— @
3
0 ; >
-3 -2 -1 0 3
£

transform via

$(x) = *

=

10 A

training data

¢

Y

8

4

5

2

10

17

10 A

training data

¢

Y

4

5

2

10

y=¢+1

10 -

| training data ¢
I z |y /|
-pl |-2 a
Slp2 11 |2
6 /P33 |10
®
3
2
0 : : >
-3 -2 -1 0 3

18

systematic polynomial features construction

d=1 d=2

L1,

=0 8 1

k=1 '331 .,331,%2

_ 2 2 2
k=2 ‘azl,wl ., T1, T2, T], T1T2, To
2 .3 2 2 .3 .2 2 .3

« Elements in the basis are the monomials of original features raised up to power k&

« With a given d and a fixed k, the basis is fixed.

25 A

20 A

15 A

10 A

9 data points; each data point has a feature € R, label y € R

generated from green dashed line

o k—1
° h(w,H) :90—|-91£E

« Learn 2 parameters for linear function

20

25

20 A

15 4

10 4

10

« Choose k = 2
« New features ¢ = [1; z; 2%
° h(iB, 9) — 00 -+ 9158 + 025132

e Learn 3 parameters for quadratic function

21

25 4

20 A

15 4

10 4

10

e Choosek =5

« New features ¢ = [1;z; z%; z°; 2*; 2°]

o h(z;0) = 0y + 012 + Oy2” + O32° + 042" + O52°
e Learn 6 parameters for degree-5 polynomial

function

22

25 A

20 1

154

10

10

23

25 A

20 A

15 4

10 -

Underfitting Appropriate model

k=1 k=2

25 A

20 1

15 A

10 A

high error on train set low error on train set

high error on test set low error on test set

25

204

151

10

Overfitting

k=10

s

low error on train set

high error on test set

24

25 A

20 A

154

10 A

« Models with many rich features and free parameters tend to have high capacity but also

Underfitting

k=1

k : a hyperparameter that determines the capacity (expressiveness) of the hypothesis class.

greater risk of overfitting.

25

20 A

15 A

10 A

Appropriate model

k=2

« How to choose k? Validation /cross-validation.

25 A

204

154

10

Overfitting

T
10

25

Similar overfitting can happen in classification

Using polynomial features of order 3

26

Quick summary:

 Linear models are mathematically and algorithmically convenient but not
expressive enough -- by themselves -- for most jobs.

« We can express really rich hypothesis classes by performing a fixed non-linear
feature transformation first, then applying our linear regression or classification
methods.

o Can think of fixed transformation as "adapters", enabling us to use old tools in
broader situations.

o Standard feature transformations: polynomials, absolute-value functions.

« For a significant period, the essence of machine learning revolved around feature

engineering—manually designing transformations to extract useful representations.

27

Outline

 Systematic feature transformations

= Engineered features
= Polynomial features

= Expressive power
» Neural networks
= Terminologies
o neuron, activation function, layer, feedforward network

= Design choices

28

leveraging nonlinear transformations

transform via ¢ ([z1;22]) = [1;]21 — 2]

[zx - 1X|

¥

importantly, linear in ¢, non-linear in x

29

~25 years ~25 years

< > < > AN
Perceptrons, PDP book,

. A 1058 1986
enthusiasm et -

'PARALLEL DISTRIBUTED | :
PROCESSING ‘ Krizhevsky,

el by O g el Sutskever,
Hinton, 2012

Minsky} " vinter,
Papert, | AND THE PDP RESEARCH GROUP ’ 0
| >
1960 1970 1980 1990 2000 2010 2020 time

Outlined the fundamental concepts of neural networks:

e Nonlinear feature transformation

} expressiveness
« "Composing" simple transformations

« Backpropagation efficient learning

30

 "Composing" simple transformations

34

ot

X1

31

o1 = o(bxy — bxy + 1) Two epiphanies:

 nonlinear transformation empowers linear tools
« "composing" simple nonlinearities amplifies such effect

0.8 7

0.6

0.4 7

some
appropriately
weighted sum

oy = o(—5x1 + bxy + 1)

10

0.8 7
0.6 7
0.4

0.2 7

0.0 71

29
1.
b5,

x ~9p,

-1, _o5 O
13055 -15 -L0 05 o

0 05 10 15 20

_.x o

Outline

« Systematic feature transformations

= Engineered features
= Polynomial features

= Expressive power
» Neural networks
= Terminologies
o neuron, activation function, layer, feedforward network

= Design choices
< heads-up:

all neural network diagrams focus on a single data point

33

—:1:1_
L2
T = — % ? a= f(z)
— wlz -
= f(w")
T

z: d-dimensional input

w: weights (i.e. parameters)
z: pre-activation output

f: activation function

a: post-activation output

w: what the algorithm learns

z: scalar
)
f: what we engineers choose

J
a: scalar

34

e.g. linear regressor represented as a computation graph

Ld

Choose activation f(z) = z

35

e.g. linear logistic classifier represented as a computation graph

Ld

Choose activation f(z) = o(z2)

36

)

Ld

(# of neurons) = (layer's output dimension).
typically, all neurons in one layer use the same
activation f (if not, uglier algebra).

typically fully connected, where all z; are
connected to all 2/, meaning each z; influences
every a’ eventually.

typically, no "cross-wiring", meaning e.g. z*
won't affect a®. (the output layer may be an

exception if softmax is used.)

37

A (fully-connected, feed-forward) neural network:
)

activations

We choose:

o activation f in each layer
 # of layers
o # of neurons in each layer

38

O9 = O'(—5331 + 5&?2 +

10 1

0.8
0.6 7
0.4

0.2 7

_gs 00 05 L
“3.0_5q -15 —10 703

weighted sum

0.0 7]

‘0.0

10 15 2.0
B - 0o 05
130 50 -15 -10 05

recall this example

some appropriate |

it can be represented as

3
3050 -15 ~10

L3050 -15 -10

5 20

_os 00 05 10 T
X

05 00 05 10 13 20
x

f(-) identity function

)
_-?).(g_g@oa
-10 05 1.0
30,0 -15 -L0 05 09

15

2.0

40

Outline

 Systematic feature transformations

= Engineered features
= Polynomial features

= Expressive power
» Neural networks
= Terminologies
o neuron, activation function, layer, feedforward network

= Design choices
& heads-up:

all neural network diagrams focus on a single data point

41

Hidden layer activation function f choices

o used to be the most popular

o firing rate of a neuron

« elegant gradient ¢'(2) = o(z) - (1 — 0(2))

nowadays, default choice:

0 ifz<0
ReLU(z) = { z otherwise
= max(0, 2)

= max(0, w! z)

very simple function form (so is the gradient).

1.5

0.5

ReLU(z)

compositions of ReLU(s) can be quite expressive

2reIu((x-(O-O.l))/O.l) , relu((x-0)/0.1)

2reIu((x-(l-O.l))/O.l) , relu((x-1)/0.1) ~ 1(0 <x < 1)
] '
1- ! 1- 1- 1- : 1-
| TR + 04---—-- ‘ + 04————-——- . + 04-----——--- _ of— L
|
~1- ~1- ! ~1- "1 ~1- ~1-
1
_2 1 1 1 _2) ll 1 _2] T l 1 _2) 1 T _2 T) 1
-2 0 2 -2 0 2 -2 0 2 -2 0 2 —2 0 2

N

TS AT

-20 -15 =10 =05 0.0 0.5 1.0 1.5 2.0

image credit: Phillip Isola

43

y decision bound
ndari
ries!

Rel
U(=3x; — 0.8x
8x5)

zZ=

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\\
\\\\\\\\\\\
\\\\\\\\\\\\\
\\\\\\\\\\\\\\\\\

N \\\\\\\\\\\\\
\\ AN
\ \\\\\\\\\\\\ AN

Rel
U(1.2x1 4+ 0.9x,, 0
-9x2,0)

z=

Z1 +22)

z

https:/ /shenshen.mit.edu/demos/2layers.html

https://shenshen.mit.edu/demos/2layers.html

output layer design choices

« # neurons, activation, and loss depend on the high-level goal.
e typically straightforward.
« Multi-class setup: if predict one and only one class out of K possibilities, then

last layer: K neurons, softmax activation, cross-entropy loss

e.g., say K = 5 classes

— L0 softmax (z;) 0.058
—3|-05 0.096
Sloo|—| exp(z;) [—s|o1s8
—>los | [T 0.260
—>| 1.0 | Zz 1 €xp (%) 0.429 |

o other multi-class settings, see lab.

« Width: # of neurons in layers

« Depth: # of layers

CHEESY CHICKEN g i
STACKER

BBQ TURKEY BACON
STACKER

« Typically, increasing either the width or depth (with non-linear activation)

makes the model more expressive, but it also increases the risk of overfitting.

However, in the realm of neural networks, the precise nature of this relationship remains an

active area of research—for example, phenomena like the double-descent curve and scaling laws

47

(The demo won't embed in PDF. But the direct link below works.)

48

https://playground.tensorflow.org/

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/p0PqpHf0/390_theme.mp4
https://s3.amazonaws.com/media-p.slid.es/videos/1146306/nnYemq2d/390_theme2.mp4

Summary

 Linear models are mathematically and algorithmically convenient but not expressive
enough -- by themselves -- for most jobs.

« We can express really rich hypothesis classes by performing a fixed non-linear feature
transformation first, then applying our linear methods. But this can get tedious.

« Neural networks are a way to automatically find good transformations for us!

o Standard NNs have layers that alternate between parameterized linear transformations
and fixed non-linear transforms (but many other designs are possible.)

« Typical non-linearities include sigmoid, tanh, relu, but mostly people use relu.

o Typical output transformations for classification are as we've seen: sigmoid, or softmax.

50

We'd love to hear
your thoughts.

Thanks!

51

https://forms.gle/HnNqPizhMoNNSyMF7
https://forms.gle/HnNqPizhMoNNSyMF7

