
https://introml.mit.edu/

Intro to Machine Learning
 Lecture 10: Markov Decision Processes

Shen Shen

April 18, 2025
11am, Room 10-250

1

https://introml.mit.edu/

Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic))

2

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4

3

4

Reinforcement Learning with Human Feedback

5

https://say-can.github.io/img/demo_sequence_compressed.mp4

6

https://say-can.github.io/img/demo_sequence_compressed.mp4

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Vπ

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

π∗

Q∗

7

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

8

Markov Decision Processes

Research area initiated in the 50s by Bellman, known under various names:

Stochastic optimal control (Control theory)

Stochastic shortest path (Operations research)

Sequential decision making under uncertainty (Economics)

Reinforcement learning (Artificial intelligence, Machine learning)

A rich variety of accessible and elegant theory, math, algorithms, and applications. But

also, considerable variation in notations.

We will use the most RL-flavored notations.

9

(state, action) results in a transition into a next state:T

Normally, we get to the “intended” state;

E.g., in state (7), action “↑” gets to state (4)

If an action would take Mario out of the grid world, stay put;

E.g., in state (9), “→” gets back to state (9)

In state (6), action “↑” leads to two possibilities:

20% chance to (2)

80% chance to (3).

80%
20%

Running example: Mario in a grid-world

9 possible states s

4 possible actions : {Up ↑, Down ↓, Left ←, Right →}a

1 2 3

4 5 6

7 8 9

10

(state, action) pairs give rewards:

in state 3, any action gives reward 1

in state 6, any action gives reward -10

any other (state, action) pair gives reward 0

1

1
1 1

−10

−10
−10 −10

reward of (3,)↓reward of)(3, ↑

reward of)(6, ↓

reward of)(6, →

discount factor: a scalar that reduces the "worth" of rewards, depending on the
timing Mario gets the rewards.

e.g., say this factor is 0.9. then, for (3,) pair, Mario gets a reward of 1 at the start
of the game; at the 2nd time step, a discounted reward of 0.9; at the 3rd time step,
it is further discounted to , and so on.

←

(0.9)2

11

Mario in a grid-world, cont'd

 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

Markov Decision Processes - Definition and terminologies

In 6.390,

 and are small discrete sets,
unless otherwise specified.
S A

12

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

S s

A a

T s, a, s(′) s s′ a

Markov Decision Processes - Definition and terminologies

80%
20%

T 7, ↑, 4 =() 1

T 9, →, 9 =() 1

T 6, ↑, 3 =() 0.8

T 6, ↑, 2 =() 0.2

1 2 3

4 5 6

7 8 9

In 6.390,

 and are small discrete sets,
unless otherwise specified.
S A

 and are short-hand for the next-
timestep
s′ a′

13

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

Markov Decision Processes - Definition and terminologies

reward of)(3, ↑

reward of)(6, →

R 3, ↑ =() 1

R 6, → =() −10

In 6.390,

 and are small discrete sets,
unless otherwise specified.

 and are short-hand for the next-
timestep

S A

s′ a′

 is deterministic and bounded.R(s, a)

1
1

1
1

-10
-10

-10
-10

14

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

The goal of an MDP is to find a "good" policy.

Markov Decision Processes - Definition and terminologies

In 6.390,

 and are small discrete sets,
unless otherwise specified.

 and are short-hand for the next-
timestep

 is deterministic and bounded.

S A

s′ a′

R(s, a)

 is deterministic.π(s)

15

a =t π(s)t

r =t R(s , a)t t

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

a trajectory (aka, an experience, or a rollout), of horizon

h

τ = s , a , r , s , a , r ,… s , a , r(0 0 0 1 1 1 h−1 h−1 h−1)

time

initial state
all depends on π

16

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Pr s = s ∣ s = s, a = a =(t
′

t−1 t−1)
T s, a, s(′)

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

time

17

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy for time steps?s0 π h

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 …+ + + + γ R(s , a)h−1
h−1 h−1+One idea:

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

time

18

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy for time steps?s0 π h

But in
Mario game: 80%20%

1 2 3

4 5 6

7 8 9
6

↑

−10

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 …+ + + + γ R(s , a)h−1
h−1 h−1+One idea:

1
1

1
1

-10
-10

-10
-10

??

if start at and
policy ,
i.e., always up

s =0 6
π(s) =↑, ∀s

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 …+ + + + γ R(s , a)h−1
h−1 h−1+E[]

in 390, this expectation is only w.r.t. the transition probabilities T s, a, s(′)

 termsh

Policy π(s)

Transition T s, a, s(′)

Reward R(s, a)

time

19

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy for time steps?s0 π h

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

20

Definition: For a given policy the state value functionsπ(s),

V (s) :=h
π E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t (t (t)) 0]

value functions : the expected sum of discounted rewards, starting in

state and follow policy for steps.

V (s)h
π

s, π h

horizon-0 values defined as 0.

value is long-term, reward is short-term (one-time).

R(s , a)0 0 γR(s , a)1 1 γ R(s , a)3
3 3γ R(s , a)2

2 2 …+ + + + γ R(s , a)h−1
h−1 h−1+

21

E[]

horizon = 0: no step lefth
0 0

000

00

0

0
V (s) =0
↑ 0

horizon = 1: receive the rewardsh
0 0

000

00

1

−10

22

V (s) =1
↑ R(s, ↑)

expanded form R(s , a)0 0 γR(s , a)1 1 γ R(s , a)2
2 2 …+ + +E[]

 termsh

evaluate the " , for all i.e. the always " policyπ(s) =↑ s, ↑

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%

0

0

R(1, ↑) + γR(1, ↑)

0

R(2, ↑) + γR(2, ↑)

1.9

23

R(3, ↑) + γR(3, ↑)

0

R(4, ↑) + γR(1, ↑) = 1 + 0.9 ∗ (1) = 1.9

R(5, ↑) + γR(2, ↑)

R(s , a)0 0 γR(s , a)1 1+E[]

 terms inside2

V (s) =2
↑

horizon h = 2 :

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%

−900

−9.28

R(6, ↑) + γ[.2R(2, ↑) + .8R(3, ↑)]

R(8, ↑) + γR(5, ↑)R(7, ↑) + γR(4, ↑) R(9, ↑) + γR(6, ↑)

action ↑

R(3, ↑)γ

action ↑

R(2, ↑)γ

= −10 + 0.9 ∗ (0.2 ∗ 0 + 0.8 ∗ 1)

= −9.28

24

?

= 0 + 0.9 ∗ (−10)

20%
2

80%
3action ↑

R(6, ↑)

6

R(s , a)0 0 γR(s , a)1 1+E[]

 terms inside2

V (s) =2
↑

0 0 1.9

00

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards

horizon h = 2 :

1
1

1
1

-10
-10

-10
-10

80%20%

action ↑

action ↑

γ R(3, ↑2)

action ↑ action ↑

action ↑

20%

80%

R(6, ↑)V (6)3
↑

γR(2, ↑)20%+ +

γR(2, ↑) γ R(2, ↑2)

γR(3, ↑)

25

80%

R(s , a)0 0 γR(s , a)1 1 +E[]γ R(s , a)2
2 2+

R(6, ↑)

+ R(2, ↑) + γR(2, ↑)[]γ20% R(3, ↑) + γR(3, ↑)[]= γ+ 80%R(6, ↑)

80%= γ20%+ V (2)2
↑ γ+ V (3)2

↑R(6, ↑)

6

2

33

2

γ R(2, ↑2)γR(3, ↑) 20%+ 80% γ R(3, ↑2)+=

R(6, ↑) γR(2, ↑)20%+ + γ R(2, ↑2) γR(3, ↑)80%+ γ R(3, ↑2)= +[]][

horizon h = 3 :

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ", ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s

s′

∑ (′) h−1
π (′)

horizon- value in state : the expected
sum of discounted rewards, starting in
state and following policy for steps.

h s

s π h

the immediate reward for
taking the policy-prescribed
action in state .π(s) s

sum up future values weighted by the
probability of getting to that next state

s′

 horizon future
values at a next state
(h− 1)

s′

discounted by γ

V (6)3
↑ = 80%γ20%+

26

V (2)2
↑ γ+ V (3)2

↑R(6, ↑)

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s , ∀s

s′

∑ (′) h−1
π (′)Bellman Recursion

V (s)2
↑

V (s)3
↑ V (s)4

↑ V (s)5
↑

V (s)6
↑

−7.048 = −10 + .9[.2 ∗ 0 + 0.8 ∗ 4.10]

V (s)61
↑ V (s)62

↑

…

27

V (s) =1
↑ R(s, ↑)

V (6) =6
↑ R(6, ↑) + γ[.2V (2) +5

↑ .8 × V (3)]5
↑

approaches infinity

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ (′) ∞
π (′)

 many linear equations, one equation for each state∣S∣

typically in MDP definition, motivated to make
 finite.

γ < 1
V (s) :=∞

π E γ R s ,π s ∣ s = s,π[∑t=0
∞ t (t (t)) 0]

Bellman Equations

If the horizon goes to infinityh

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s , ∀s

s′

∑ (′) h−1
π (′)Bellman Recursion

V (s)∞
↑

−2.8 = V (6) =∞
↑ R(6, ↑) + γ[.2V (2) +∞

↑ .8 × V (3)]∞
↑ = −10 + .9[.2 × 0 + .8 ∗ 10]

10 = V (3) =∞
↑ R(3, ↑) + γ[V (3)] =∞

↑ 1 + .9 × 10

−2.52 = V (9) =∞
↑ R(9, ↑) + γ[V (6)] =∞

↑ 0 + .9 × (−2.8)

28

finite-horizon Bellman recursions infinite-horizon Bellman equations

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ (′) ∞
π (′)V (s) =h

π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ (′) h−1
π (′)

Recall: For a given policy the (state) value functionsπ(s),

V (s) :=h
π E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t (t (t)) 0]

π(s) V (s)h
π

MDP
Policy evaluation

Quick summary

1. By summing terms:h

2. By leveraging structure:

29

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

30

An MDP has a unique optimal value .V (s)h
∗

Optimal policy might not be unique (think, e.g. symmetric world).π∗

For finite , optimal policy depends on how many time steps left.h πh
∗

When , time no longer matters, i.e., there exists a stationary .h→∞ π∗

Under optimal policy, recursion holds too

Optimal policy π∗

Definition: for a given MDP and a fixed horizon (possibly infinite), is an optimal policy

if for all and for all possible policy .

h π∗

V (s) =h
π∗ V (s) ⩾h

∗ V (s)h
π s ∈ S π

V (s) =h
∗ R(s,π (s)) +∗ γ T s,π (s), s V s , ∀s,h

s′

∑ (∗ ′) h−1
∗ (′)

31

One idea: enumerate over all , do policy evaluation, compare get π V ,π V (s)∗

tedious, and even with ... not super clear how to actV (s)∗

How to search for an optimal policy ?π∗

V (s) =h
∗ R(s,π (s)) +∗ γ T s,π (s), s V s , ∀s,h

s′

∑ (∗ ′) h−1
∗ (′)

Definition: for a given MDP and a fixed horizon (possibly infinite), is an optimal policy

if for all and for all possible policy .

h π∗

V (s) =h
π∗ V (s) ⩾h

∗ V (s)h
π s ∈ S π

V (s)∞
∗V (s)62

∗V (s)61
∗

…

32

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

33

Optimal state-action value functions Q (s, a)h
∗

: the expected sum of discounted rewards forQ (s, a)h
∗

starting in state ,s

take action , for one stepa

act optimally there afterwards for the remaining steps(h− 1)

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a , ∀s, a,h∑s′ (′) a′ h−1

∗ (′ ′)

34

recursively finding Q (s, a)h
∗

: the expected sum of discounted rewards forQ (s, a)h
∗

Q (s, a)0
∗

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9

1

1
1 1

−10

−10

−10
−10

States and
one special
transition:

R(s, a)

35

Q (s, a)1
∗

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)2
∗

Let's consider Q (3, →2
∗)

receive R(3, →)

= 1 + .9max Q 3, aa′ 1
∗ (′)

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′ 1
∗ (′)

= 1.9

Recall: γ = 0.9

States and
one special
transition:

36

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

Q (3, →2
∗) = R(3, →) + γmax Q 3, aa′ 1

∗ (′)

Q (s, a)1
∗ = R(s, a)

1 2 3

4 5 6

7 8 9

80%20%

1.9

: the value forQ (s, a)h
∗

Let's consider Q (3, ↑2
∗)

receive R(3, ↑)

= 1 + .9max Q 3, aa′ 1
∗ (′)

next state = 3, act optimally for the
remaining one timestep

receive

s′

max Q 3, aa′ 1
∗ (′)

= 1.9

1.9

Recall:

1 2

987

54

3

6

80%
20%

37

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

Q (3, ↑2
∗) = R(3, ↑) + γmax Q 3, aa′ 1

∗ (′)

1.9
0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)Q (s, a)1
∗ Q (s, a)2

∗

: the value forQ (s, a)h
∗

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Let's consider Q (3, ←2
∗)

receive R(3, ←)

= 1 + .9max Q 2, aa′ 1
∗ (′)

next state = 2, act optimally for the
remaining one timestep

receive

s′

max Q 2, aa′ 1
∗ (′)

= 1

1

Recall:

1 2

987

54

3

6

80%
20%

38

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

Q (3, ←2
∗) = R(3, ←) + γmax Q 2, aa′ 1

∗ (′)

1.9
1.9

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)

receive R(3, ↓)

Let's consider Q (3, ↓2
∗)

= 1 + .9max Q 6, aa′ 1
∗ (′)

next state = 6, act optimally for
the remaining one timestep

receive

s′

max Q 6, aa′ 1
∗ (′)

= −8

−8

Recall:

1 2

987

54

3

6

80%
20%

39

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

Q (3, ↓2
∗) = R(3, ↓) + γmax Q 2, aa′ 1

∗ (′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

1
1.9
1.9

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)

receive R(6, ↑)

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

−8
1
1.9
1.9

Recall:

1 2

987

54

3

6

80%
20%

40

γ = 0.9

States and
one special
transition:

act optimally for one more timestep,
at the next state s′

20% chance, = 2, act optimally,
receive

s′

max Q 2, aa′ 1
∗ (′)−9.28

= −10 + .9[.2 × 0 + .8 × 1] = −9.28

Let's consider Q (6, ↑2
∗) = R(6, ↑) + γ[.2max Q 2, a +a′ 1

∗ (′) .8max Q 3, a]a′ 1
∗ (′)

80% chance, = 3, act optimally,
receive

s′

max Q 3, aa′ 1
∗ (′)

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)

Q (6, ↑2
∗) = R(6, ↑) + γ[.2max Q 2, a +a′ 1

∗ (′) .8max Q 3, a]a′ 1
∗ (′)

1.9
1.9

1
−8

−9.28

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a , ∀s, a,h∑s′ (′) a′ h−1

∗ (′ ′)in general

Recall:

1 2

987

54

3

6

80%
20%

41

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)1
∗

= R(s, a)

Q (s, a)2
∗

: the value forQ (s, a)h
∗

starting in state ,
take action , for one step
act optimally there afterwards for the remaining steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)
1.9

1.9
1
−8

−9.28

Recall:

1 2

987

54

3

6

80%
20%

42

γ = 0.9

States and
one special
transition:

Q (s, a)1
∗ Q (s, a)2

∗

π (s) =h
∗ argmax Q (s, a), ∀s,ha h

∗

what's the optimal action in state 3, with horizon 2, given by

π (3) =2
∗ ?

in general

either up or right

: the value forQ (s, a)h
∗

Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies

Optimal action value functions:

Value iteration

Vπ

π∗

Q∗

43

Given the recursion

Q (s, a) =∞
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ ∞

∗ (′ ′)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ h−1

∗ (′ ′)

we can have an infinite horizon equation

Value Iteration

if run this block times
and break, then the

returns are exactly

h

Qh
∗ {

Q (s, a)∞
∗

44

 values vs. valuesV Q

 is defined over state space; is defined over (state, action) space.V Q

 can be derived from , and vise versa. V (s)h
∗ Q (s, a) :h

∗

 is easier to read "optimal actions" from.Q∗

We care more about and Vπ Q∗

45

V (s)61
↑ V (s)62

↑ V (s)∞
↑

V (s)61
∗ V (s)62

∗ V (s)∞
∗

Q (s, a)61
∗ Q (s, a)62

∗ Q (s, a)∞
∗

V (s) =h
∗ max Q (s, a)a [h

∗]

π (s) =h
∗ argmax Q (s, a)a [h

∗]

46

Summary
Markov decision processes (MDP) is nice mathematical framework for making

sequential decisions. It's the foundation to reinforcement learning.

An MDP is defined by a five-tuple, and the goal is to find an optimal policy that

leads to high expected cumulative discounted rewards.

To evaluate how good a given policy we can calculate via

the summation over rewards definition

Bellman recursion for finite horizon, equation for infinite horizon

To find an optimal policy, we can recursively find via the value iteration

algorithm, and then act greedily w.r.t. the values.

π, V (s)π

Q (s, a)∗

Q∗

47

https://forms.gle/DefAyvq8KA9kg37X8

Thanks!
We'd love to hear

your thoughts.

48

https://forms.gle/DefAyvq8KA9kg37X8

