

6.390 Intro to Machine Learning

Lecture 10: Markov Decision Processes

Shen Shen
April 18, 2025
11am, Room 10-250

1

Learning to Walk

Massachusetts Institute of Technology, 2004

Toddler demo, Russ Tedrake thesis, 2004 (Uses vanilla policy gradient (actor-critic))

[Solving Rubik's cube with a robot hand. OpenAl. 2019]

15]

Discovering faster matrix multiplication algorithms with reinforcement learning

https://doi.org/10.1038/s41586-022-05172-4

Received: 2 October 2021

Accepted: 2 August 2022

Published online: 5 October 2022

Alhussein Fawzi^{1,2 ⋈}, Matej Balog^{1,2}, Aja Huang^{1,2}, Thomas Hubert^{1,2}, Bernardino Romera-Paredes^{1,2}, Mohammadamin Barekatain¹, Alexande Francisco J. R. Ruiz¹, Julian Schrittwieser¹, Grzegorz Swirszcz¹, David Si & Pushmeet Kohli¹

a

$$\left(\begin{array}{cc}c_1&c_2\\c_3&c_4\end{array}\right)=\left(\begin{array}{cc}a_1&a_2\\a_3&a_4\end{array}\right)\cdot\left(\begin{array}{cc}b_1&b_2\\b_3&b_4\end{array}\right)$$

b

$$m_{1} = (a_{1} + a_{4})(b_{1} + b_{4})$$

$$m_{2} = (a_{3} + a_{4}) b_{1}$$

$$m_{3} = a_{1} (b_{2} - b_{4})$$

$$m_{4} = a_{4} (b_{3} - b_{1})$$

$$m_{5} = (a_{1} + a_{2}) b_{4}$$

$$m_{6} = (a_{3} - a_{1})(b_{1} + b_{2})$$

$$m_{7} = (a_{2} - a_{4})(b_{3} + b_{4})$$

$$c_{1} = m_{1} + m_{4} - m_{5} + m_{7}$$

$$c_{2} = m_{3} + m_{5}$$

$$c_{3} = m_{2} + m_{4}$$

$$c_{4} = m_{1} - m_{2} + m_{3} + m_{6}$$

С

Size

(n, m, p)	known	known	Modular	Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	(Strassen, 1969) ² (2, 2, 2) \otimes (2, 2, 2)	49	47	49
(5, 5, 5)	(3, 5, 5) + (2, 5, 5)	98	96	98
(2, 2, 3)	(2, 2, 2) + (2, 2, 1)	11	11	11
(2, 2, 4)	(2, 2, 2) + (2, 2, 2)	14	14	14
(2, 2, 5)	(2, 2, 2) + (2, 2, 3)	18	18	18
(2, 3, 3)	(Hopcroft and Kerr, 1971) ¹	⁶ 15	15	15
(2, 3, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 20	20	20
(2, 3, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 25	25	25
(2, 4, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 26	26	26
(2, 4, 5)	(Hopcroft and Kerr, 1971)	⁶ 33	33	33
(2, 5, 5)	(Hopcroft and Kerr, 1971)	⁶ 40	40	40
(3, 3, 4)	(Smirnov, 2013) ¹⁸	29	29	29
(3, 3, 5)	(Smirnov, 2013) ¹⁸	36	36	36
(3, 4, 4)	(Smirnov, 2013) ¹⁸	38	38	38
(3, 4, 5)	(Smirnov, 2013) ¹⁸	48	47	47
(3, 5, 5)	(Sedoglavic and Smirnov, 202	21) ¹⁹ 58	58	58
(4, 4, 5)	(4, 4, 2) + (4, 4, 3)	64	63	63
(4, 5, 5)	$(2, 5, 5) \otimes (2, 1, 1)$	80	76	76

Rest method

Rest rank AlphaTensor rank

Reinforcement Learning with Human Feedback

[Aligning language models to follow instructions. Ouyang et al. 2022]

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

Markov Decision Processes

- Research area initiated in the 50s by Bellman, known under various names:
 - Stochastic optimal control (Control theory)
 - Stochastic shortest path (Operations research)
 - Sequential decision making under uncertainty (Economics)
 - Reinforcement learning (Artificial intelligence, Machine learning)
- A rich variety of accessible and elegant theory, math, algorithms, and applications. But also, considerable variation in notations.
- We will use the most RL-flavored notations.

1 2 3 •••• • 80% 20% •••• 6 7 8 9

Running example: Mario in a grid-world

- 9 possible states s
- 4 possible actions a: {Up \uparrow , Down \downarrow , Left \leftarrow , Right \rightarrow }
- (state, action) results in a **transition** T into a next state:
 - Normally, we get to the "intended" state;
 - E.g., in state (7), action "↑" gets to state (4)
 - If an action would take Mario out of the grid world, stay put;
 - \circ E.g., in state (9), " \rightarrow " gets back to state (9)
 - In state (6), action "↑" leads to two possibilities:
 - 20% chance to (2)
 - 80% chance to (3).

• (state, action) pairs give **rewards**:

• in state 3, any action gives reward 1

♠ • in state 6, any action gives reward -10

any other (state, action) pair gives reward 0

- **discount factor**: a scalar that reduces the "worth" of rewards, depending on the timing Mario gets the rewards.
 - e.g., say this factor is 0.9. then, for $(3, \leftarrow)$ pair, Mario gets a reward of 1 at the start of the game; at the 2nd time step, a discounted reward of 0.9; at the 3rd time step, it is further discounted to $(0.9)^2$, and so on.

- S: state space, contains all possible states s.
- \mathcal{A} : action space, contains all possible actions a.

In 6.390,

• \mathcal{S} and \mathcal{A} are small discrete sets, unless otherwise specified.

- S: state space, contains all possible states s.
- \mathcal{A} : action space, contains all possible actions a.
- T(s, a, s'): the probability of transition from state s to s' when action a is taken.

1	2 ▼	3 80%
4	5	6
7	8	9

$$\mathrm{T}\left(7,\uparrow,4
ight)=1$$

$$T(9, \rightarrow, 9) = 1$$

$$T(6,\uparrow,3) = 0.8$$

$$\mathrm{T}\left(6,\uparrow,2
ight)=0.2$$

In 6.390,

- \mathcal{S} and \mathcal{A} are small discrete sets, unless otherwise specified.
- s' and a' are short-hand for the next-timestep

- S: state space, contains all possible states s.
- \mathcal{A} : action space, contains all possible actions a.
- T (s, a, s'): the probability of transition from state s to s' when action a is taken.
- R(s, a): reward, takes in a (state, action) pair and returns a reward.

In 6.390,

- \mathcal{S} and \mathcal{A} are small discrete sets, unless otherwise specified.
- s' and a' are short-hand for the nexttimestep
- R(s, a) is deterministic and bounded.

- S: state space, contains all possible states s.
- \mathcal{A} : action space, contains all possible actions a.
- T (s, a, s'): the probability of transition from state s to s' when action a is taken.
- R(s, a): reward, takes in a (state, action) pair and returns a reward.
- $\gamma \in [0, 1]$: discount factor, a scalar.

• $\pi(s)$: policy, takes in a state and returns an action. The goal of an MDP is to find a "good" policy.

In 6.390,

- *S* and *A* are small discrete sets, unless otherwise specified.
- s' and a' are short-hand for the nexttimestep
- R(s, a) is deterministic and bounded.
- $\pi(s)$ is deterministic.

a trajectory (aka, an experience, or a rollout), of horizon h

$$\bullet \ \ a_t = \pi(s_t)$$

$$ullet r_t = \mathrm{R}(s_t, a_t)$$

$$egin{aligned} ullet & \operatorname{Pr}\left(s_{t}=s'\mid s_{t-1}=s, a_{t-1}=a
ight) = \ & \operatorname{T}\left(s,a,s'
ight) \end{aligned}$$

Starting in a given s_0 , how "good" is it to follow a policy π for h time steps?

One idea:
$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \gamma^3 R(s_3, a_3) + \dots + \gamma^{h-1} R(s_{h-1}, a_{h-1})$$

Reward R(s,a) r_0 r_1 r_2 r_3 r_4 r_{h-2} r_{h-1} Transition T(s,a,s') r_{h-1} r_{h-2} r_{h-1} r_{h-2} r_{h-1} r_{h-2} r_{h-1} r_{h-1} r_{h-2} r_{h-1} r_{h-

Starting in a given s_0 , how "good" is it to follow a policy π for h time steps?

One idea:
$$R(s_0, a_0) + \gamma R(s_1, a_1) + \gamma^2 R(s_2, a_2) + \gamma^3 R(s_3, a_3) + \dots + \gamma^{h-1} R(s_{h-1}, a_{h-1})$$

But in Mario game:

,	1	2 20% [▼] ···.	3 <u>•</u> 80%
,	4	5	6
	7	8	9

if start at $s_0 = 6$ and policy $\pi(s) = \uparrow, \forall s$, i.e., always up

Starting in a given s_0 , how "good" is it to follow a policy π for h time steps?

$$h \text{ terms}$$
 $\mathbb{E} \Big[\, \mathrm{R}(s_0, a_0) \, + \, \gamma \mathrm{R}(s_1, a_1) \, + \, \gamma^2 \mathrm{R}(s_2, a_2) \, + \, \gamma^3 \mathrm{R}(s_3, a_3) \, + \ldots \, + \, \gamma^{h-1} \mathrm{R}(s_{h-1}, a_{h-1}) \, \Big]$

in 390, this expectation is only w.r.t. the transition probabilities T(s, a, s')

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

$$\mathbb{E} \Big[\mathrm{R}(s_0, a_0) \;\; + \;\; \gamma \mathrm{R}(s_1, a_1) \;\; + \;\; \gamma^2 \mathrm{R}(s_2, a_2) \;\; + \;\; \gamma^3 \mathrm{R}(s_3, a_3) \;\; + \; \ldots \;\; + \;\; \gamma^{h-1} \mathrm{R}(s_{h-1}, a_{h-1}) \, \Big]$$

Definition: For a *given* policy $\pi(s)$, the state **value functions**

$$\mathrm{V}_{h}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{h-1} \gamma^{t} \mathrm{R}\left(s_{t}, \pi\left(s_{t}
ight)
ight) \mid s_{0} = s, \pi
ight], orall s, h$$

- value functions $V_h^{\pi}(s)$: the expected sum of discounted rewards, starting in state s, and follow policy π for h steps.
- horizon-0 values defined as 0.
- value is long-term, reward is short-term (one-time).

evaluate the " $\pi(s) = \uparrow$, for all s, i.e. the always \uparrow " policy

states and one special transition:

1	2 20% [▼] ···.	3 ≜ 80%
4	5	6
7	8	9

rewards

- $\pi(s) = ``\uparrow", \ \forall s$
- $\gamma=0.9$

expanded form

$$\mathbb{E} \Big[\operatorname{R}(s_0, a_0) \ + \ \gamma \operatorname{R}(s_1, a_1) \ + \ \gamma^2 \operatorname{R}(s_2, a_2) \ + \dots \Big]$$

h terms

horizon h = 0: no step left

$${
m V}_0^{\uparrow}(s)=0$$

0	0	0
0	0	0
0	0	0

horizon h = 1: receive the rewards

$${
m V}_1^{\uparrow}(s)={
m R}(s,\uparrow)$$

0	0	1
0	0	-10
0	0	0

horizon h = 2:

states and one special transition:

1	2 20% ····.	3 •80%
4	5	6
7	8	9

rewards

- $\pi(s) = ``\uparrow", \ \forall s$
- $\gamma = 0.9$

horizon h = 2:

states and one special transition:

1	2 20% [▼] ···.	3 ≜ 80%
4	5	6
7	8	9

rewards

- $\pi(s) = ``\uparrow", \forall s$
- $\gamma = 0.9$

$ext{horizon } h = 3: \quad \mathbb{E}ig[\operatorname{R}(s_0, a_0) + \gamma \operatorname{R}(s_1, a_1) + \gamma^2 \operatorname{R}(s_2, a_2) ig]$

 $\gamma \mathrm{R}(2,\uparrow)$

 $\gamma^2 \mathrm{R}(2,\uparrow)$

states and one special transition:

1	2 20% [▼] ···.	3 •80%
4	5	6
7	8	9

rewards

- $\pi(s) = `` \uparrow ", \forall s$
- $\gamma = 0.9$

horizon-h value in state s: the expected sum of discounted rewards, starting in state s and following policy π for h steps.

$$\mathrm{V}_3^{\uparrow}(6) = \mathrm{R}(6,\uparrow) \, + \, 20\% \,\, \gamma \,\, \mathrm{V}_2^{\uparrow}(2) \, + \, 80\% \,\, \gamma \,\, \mathrm{V}_2^{\uparrow}(3)$$

$$\mathrm{V}_h^\pi(s) = \mathrm{R}\left(s,\pi(s)
ight) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{h-1}^\pi\left(s'
ight)$$

the immediate reward for taking the policy-prescribed action $\pi(s)$ in state s.

(h-1) horizon future values at a next state s'

sum up future values weighted by the probability of getting to that next state s'

discounted by γ

Bellman Recursion

$$egin{aligned} \mathrm{V}_h^{\pi}(s) &= \mathrm{R}\left(s,\pi(s)
ight) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{h-1}^{\pi}\left(s'
ight), orall s \ \mathrm{V}_{2}^{\uparrow}(s) & \mathrm{V}_{3}^{\uparrow}(s) & \mathrm{V}_{4}^{\uparrow}(s) & \mathrm{V}_{5}^{\uparrow}(s) \end{aligned}$$

$$\mathrm{V}_1^{\uparrow}(s)=\mathrm{R}(s,\uparrow)$$

0.00	0.00	1.00
0.00	0.00	-10.00
0.00	0.00	0.00

$${
m V}_2^{\uparrow}(s)$$

0.00	0.00	1.90
0.00	0.00	-9.28
0.00	0.00	-9.00

$${
m V}_3^{\uparrow}(s)$$

0.00	0.00	2.71
0.00	0.00	-8.63
0.00	0.00	-8.35

$${
m V}_4^{\uparrow}(s)$$

0.00	0.00	3.44
0.00	0.00	-8.05
0.00	0.00	-7.77

 ${
m V}_{61}^{\uparrow}(s)$

$${
m V}_5^{\uparrow}(s)$$

0.00	0.00	4.10
0.00	0.00	-7.52
0.00	0.00	-7.24

$${
m V}_6^{\uparrow}(s)$$

0.00	0.00	4.69
0.00	0.00	-7.05
0.00	0.00	-6.77

$$egin{aligned} \mathbf{V}_{6}^{\uparrow}(6) &= \mathbf{R}(6,\uparrow) + \gamma [.2 \mathbf{V}_{5}^{\uparrow}(2) + .8 imes \mathbf{V}_{5}^{\uparrow}(3)] \ -7.048 &= -10 + .9 [.2*0 + 0.8*4.10] \end{aligned}$$

$$7.048 = -10 + .9[.2*0 + 0.8*4.10]$$

0.00 0.00 9.98 0.00 0.00 -2.81 0.00 0.00 -2.53

$${
m V}_{62}^{\uparrow}(s)$$

0.00	0.00	9.99
0.00	0.00	-2.81
0.00	0.00	-2.53

Bellman Recursion

$$\mathrm{V}_{h}^{\pi}(s) = \mathrm{R}\left(s,\pi(s)
ight) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{h-1}^{\pi}\left(s'
ight), orall s$$
 approaches infinity

If the horizon h goes to infinity

$$\mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s$$

$${
m V}_{\infty}^{\uparrow}(s)$$

 $|\mathcal{S}|$ many linear equations, one equation for each state

0.00	0.00	10.00	$10=\mathrm{V}_{\infty}^{\uparrow}(3)=\mathrm{R}(3,\uparrow)+\gamma[\mathrm{V}_{\infty}^{\uparrow}(3)]=1+.9 imes10$
0.00	0.00	-2.80	$-2.8 = { m V}_{\infty}^{\uparrow}(6) = { m R}(6,\uparrow) + \gamma [.2 { m V}_{\infty}^{\uparrow}(2) + .8 imes { m V}_{\infty}^{\uparrow}(3)] \ = -10 + .9 [.2 imes 0 + .8 * 10]$
0.00	0.00	-2.52	$-2.52=\mathrm{V}_{\infty}^{\uparrow}(9)=\mathrm{R}(9,\uparrow)+\gamma[\mathrm{V}_{\infty}^{\uparrow}(6)]=0+.9 imes(-2.8)$

typically γ < 1 in MDP definition, motivated to make $V_{\infty}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{t} \mathrm{R}\left(s_{t}, \pi\left(s_{t}\right)\right) \mid s_{0} = s, \pi\right]$ finite.

Quick summary

1. By summing *h* terms:

Recall: For a *given* policy $\pi(s)$, the (state) **value functions**

$$\mathrm{V}_{h}^{\pi}(s) := \mathbb{E}\left[\sum_{t=0}^{h-1} \gamma^{t} \mathrm{R}\left(s_{t}, \pi\left(s_{t}
ight)
ight) \mid s_{0} = s, \pi
ight], orall s, h$$

2. By leveraging structure:

finite-horizon Bellman recursions

$$\mathrm{V}_{h}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{h-1}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight),
orall s \ \left| \mathrm{$$

infinite-horizon Bellman equations

$$\mathrm{V}_{\infty}^{\pi}(s) = \mathrm{R}(s,\pi(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi(s),s'
ight) \mathrm{V}_{\infty}^{\pi}\left(s'
ight), orall s'$$

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

Optimal policy π^*

Definition: for a given MDP and a fixed horizon h (possibly infinite), π^* is an optimal policy if $V_h^{\pi^*}(s) = V_h^*(s) \geqslant V_h^{\pi}(s)$ for all $s \in \mathcal{S}$ and for all possible policy π .

- An MDP has a unique optimal value $V_h^*(s)$.
- Optimal policy π^* might not be unique (think, e.g. symmetric world).
- For finite h, optimal policy π_h^* depends on how many time steps left.
- When $h \to \infty$, time no longer matters, i.e., there exists a stationary π^* .
- Under optimal policy, recursion holds too

$$\mathrm{V}_{h}^{st}(s) = \mathrm{R}(s,\pi^{st}(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi^{st}(s),s'
ight) \mathrm{V}_{h-1}^{st}\left(s'
ight), orall s, h$$

Definition: for a given MDP and a fixed horizon h (possibly infinite), π^* is an optimal policy if $V_h^{\pi^*}(s) = V_h^*(s) \geqslant V_h^{\pi}(s)$ for all $s \in \mathcal{S}$ and for all possible policy π .

$$\mathrm{V}_{h}^{st}(s) = \mathrm{R}(s,\pi^{st}(s)) + \gamma \sum_{s'} \mathrm{T}\left(s,\pi^{st}(s),s'
ight) \mathrm{V}_{h-1}^{st}\left(s'
ight), orall s, h$$

How to search for an optimal policy π^* ?

- One idea: enumerate over all π , do policy evaluation, compare V^{π} , get $V^*(s)$
- tedious, and even with $V^*(s)$... not super clear how to act

${ m V}_{61}^*(s)$	8.08	8.98	9.98
	0.00	0.90	9.90
	7.27	8.08	-1.20
	6.54	7.27	6.54

${ m V}_{62}^*(s)$	8.09	8.99	9.99
	7.28	8.09	-1.19
	6.55	7.28	6.55

 $V_{\infty}^{*}(s)$ 8.10 9.00 10.00 7.29 8.10 -1.18

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

Optimal state-action value functions $Q_h^*(s, a)$

 $Q_h^*(s, a)$: the expected sum of discounted rewards for

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

$$\mathrm{Q}_{h}^{st}(s,a) = \mathrm{R}(s,a) + \gamma \sum_{s'} \mathrm{T}\left(s,a,s'
ight) \max_{a'} \mathrm{Q}_{h-1}^{st}\left(s',a'
ight), orall s, a, h$$

recursively finding $Q_h^*(s, a)$

 $Q_h^*(s, a)$: the expected sum of discounted rewards for

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

 $\mathrm{Q}_0^*(s,a)$

0	0 /	0 /
0×0	0×0	0×0
0	0	0
0	0 /	0
0×0	0×0	$\mid 0 \times 0 \mid$
0	0	0
0	0	0
0×0	0×0	0×0
0	0	0

$$\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$$

0	0 /	1
0×0	0×0	$ 1 \times 1 $
0	0	1
0	0 /	-10/
0×0	0×0	-10 \(\sigma -10 \)
0	0	-10
0	0	0
$0 \searrow 0$	0×0	0×0
0	0	0

Recall:

 $\gamma = 0.9$

States and one special transition:

1	2 ▼.	3 <u></u> ♣ 80%
4	20% $^{\circ}$	6
7	8	9

R(s,a)

 $Q_h^*(s, a)$: the value for

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:

$$\gamma=0.9$$

States and one special transition:

1	2 20% [▼] ···.	3 •80%
4	5	6
7	8	9

 $\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$

0 /	0	1
0×0	$\mid 0 \mid \times \mid 0$	$0 \mid 1 \mid 1 \mid$
0	0	1
0	0	-10/
0×0	0×0	0 -10 -10
0	0	-10
0 /	0	\bigcirc 0 \bigcirc
$0 \searrow 0$	0×0	$0 \mid 0 \times 0 \mid 0$
0	0	0

 $\mathrm{Q}_2^*(s,a)$

Let's consider $Q_2^*(3, \rightarrow)$

- receive $R(3, \rightarrow)$
- next state s' = 3, act **optimally** for the remaining one timestep
 - receive $\max_{a'} \mathbf{Q}_1^* (3, a')$

$$egin{aligned} \mathrm{Q}_{2}^{*}(3, o) &= \mathrm{R}(3, o) \ + \gamma \max_{a'} \mathrm{Q}_{1}^{*}\left(3,a'
ight) \ &= 1 + .9 \max_{a'} \mathrm{Q}_{1}^{*}\left(3,a'
ight) \ &= 1.9 \end{aligned}$$

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:

States and one special transition:

$\gamma = 0.$	9	
1	2 ▼.	3 <u>↑</u> 80%
4	20% · 5	6
7	8	9

 $\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$

	0	$\overline{}$		0	$\overline{/}$	1/
0	X	0	0	\times	0	1 1
	0			0		1
	0			0		-10/
0	X	0	0	\times	0	-10 < -10
	0			0		-10
	0			0	//	0 /
0	\times	0	0	\times	0	$\mid 0 \searrow 0 \mid$
	0			0		0

 $\mathrm{Q}_2^*(s,a)$

Let's consider $Q_2^*(3,\uparrow)$

- receive $R(3,\uparrow)$
- next state s' = 3, act **optimally** for the remaining one timestep
 - receive $\max_{a'} Q_1^* (3, a')$

$$egin{aligned} \mathrm{Q}_2^*(3,\uparrow) &= \mathrm{R}(3,\uparrow) \ + \gamma \max_{a'} \mathrm{Q}_1^*\left(3,a'
ight) \ &= 1 + .9 \max_{a'} \mathrm{Q}_1^*\left(3,a'
ight) \ &= 1.9 \end{aligned}$$

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:	
States and	

States and	1	2 ▼	3 ★ 80%
one special transition:	4	20% · 5	6
6	7	8	9

$$\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$$

$$\mathrm{Q}_2^*(s,a)$$

Let's consider $Q_2^*(3, \leftarrow)$

- receive $R(3, \leftarrow)$
- next state s' = 2, act **optimally** for the remaining one timestep
 - receive $\max_{a'} Q_1^* (2, a')$

$$egin{aligned} \mathrm{Q}_2^*(3,\leftarrow) &= \mathrm{R}(3,\leftarrow) \ + \gamma \max_{a'} \mathrm{Q}_1^*\left(2,a'
ight) \ &= 1 + .9 \max_{a'} \mathrm{Q}_1^*\left(2,a'
ight) \ &= 1 \end{aligned}$$

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:

 $\gamma = 0.9$

States and one special transition:

-		
1	2 ▼	3 <u></u> 80%
4	20% $^{\circ}$	6
7	8	9

 $\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$

0	0	1
0×0	0×0	$ 1 \times 1 $
0	0	1
0 /	0	-10/
0×0	0×0	-10 < -10
0	0	-10
0 /	0 /	0
0×0	0×0	$\mid 0 \times 0 \mid$
0		0

 $\mathrm{Q}_2^*(s,a)$

Let's consider $Q_2^*(3,\downarrow)$

- receive $R(3,\downarrow)$
- next state s' = 6, act **optimally** for the remaining one timestep
 - receive $\max_{a'} \mathbf{Q}_1^* (6, a')$

$$egin{aligned} \mathrm{Q}_{2}^{*}(3,\downarrow) &= \mathrm{R}(3,\downarrow) \ + \gamma \max_{a'} \mathrm{Q}_{1}^{*}\left(2,a'
ight) \ &= 1 + .9 \max_{a'} \mathrm{Q}_{1}^{*}\left(6,a'
ight) \ &= -8 \end{aligned}$$

 $Q_h^*(s, a)$: the value for

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:	$\gamma=0.9$	9	
States and	1	2 ▼.	3 ♠ 80%
one special transition:	4	20% · 5	6
25			

$$\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$$

$$\mathrm{Q}_2^*(s,a)$$

- receive $R(6,\uparrow)$
- act optimally for one more timestep,
 at the next state s'
 - 20% chance, s' = 2, act optimally, receive $\max_{a'} \mathbf{Q}_1^* (2, a')$
 - 80% chance, s' = 3, act optimally, receive $\max_{a'} \mathbf{Q}_1^* (3, a')$

Let's consider
$$Q_2^*(6,\uparrow)$$

$$=\mathrm{R}(6,\uparrow)\ +\gamma[.2\max_{a'}\mathrm{Q}_1^*\left(2,a'
ight)+.8\max_{a'}\mathrm{Q}_1^*\left(3,a'
ight)]$$

$$=-10+.9[.2\times0+.8\times1]=-9.28$$

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:

 $\gamma=0.9$

States and one special transition:

1		
1	2 ▼.	3 <u>↑</u> 80%
4	20% . 5	6
7	8	9

$$\mathrm{Q}_1^*(s,a)$$

 $= \mathrm{R}(s,a)$

0	0	1
0×0	0×0	$ 1 \times 1 $
0	0	1
0 /	0 /	-10/
0×0	0×0	-10 < -10
0	0	-10
0 /	0 /	\setminus 0 $/$
0×0	0×0	$\mid 0 \searrow 0 \mid$
0	0	0

$$\mathrm{Q}_2^*(s,a)$$

$$Q_{2}^{*}(6,\uparrow) = R(6,\uparrow) + \gamma[.2 \max_{a'} Q_{1}^{*}(2,a') + .8 \max_{a'} Q_{1}^{*}(3,a')]$$

$$\mathrm{Q}_{h}^{st}(s,a) = \mathrm{R}(s,a) + \gamma \sum_{s'} \mathrm{T}\left(s,a,s'
ight) \max_{a'} \mathrm{Q}_{h-1}^{st}\left(s',a'
ight), orall s, a, h$$

 $Q_h^*(s, a)$: the value for

- starting in state *s*,
- take action *a*, for one step
- act **optimally** there afterwards for the remaining (h-1) steps

Recall:

States and one special transition:

γ — 0.	9	
1	2 ▼ <u>.</u>	3 <u>↑</u> 80%
4	20% $^{\circ}$	6
7	8	9

 $\mathrm{Q}_1^*(s,a) = \mathrm{R}(s,a)$

0	0	1
0×0	0×0	1×1
0		1
0	\ 0 /	-10/
0×0	0×0	-10 < -10
0	/ 0	-10
0	0 /	0 /
0×0	0×0	0×0
0		0

 $\mathrm{Q}_2^*(s,a)$

what's the optimal action in state 3, with horizon 2, given by $\pi_2^*(3) = ?$

either up or right

in general

$$\pi_h^*(s) = rg \max_a \mathrm{Q}_h^*(s,a), orall s, h$$

Outline

- Markov Decision Processes Definition, terminologies, and policy
- Policy Evaluation
 - State Value Functions V^{π}
 - Bellman recursions and Bellman equations
- Policy Optimization
 - Optimal policies π^*
 - Optimal action value functions: Q*
 - Value iteration

Given the recursion
$$Q_h^*(s, a) = R(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q_{h-1}^*(s', a')$$

we can have an infinite horizon equation

$$\mathrm{Q}_{\infty}^{*}(s,a) = \mathrm{R}(s,a) + \gamma \sum_{s'} \mathrm{T}\left(s,a,s'
ight) \max_{a'} \mathrm{Q}_{\infty}^{*}\left(s',a'
ight)$$

Value Iteration

1. for
$$s \in \mathcal{S}, a \in \mathcal{A}$$
:

2.
$$Q_{old}(s, a) = 0$$

3. **while** True:

if run this block *h* times

$$4. \quad \mathbf{for} \ s \in \mathcal{S}, a \in \mathcal{A}$$

returns are exactly
$$Q_h^*$$
 5. $Q_{\text{new}}(s, a) \leftarrow R(s, a) + \gamma \sum_{s'} T(s, a, s') \max_{a'} Q_{\text{old}}(s', a')$ 6. **if** $\max_{s,a} |Q_{\text{old}}(s, a) - Q_{\text{new}}(s, a)| < \epsilon$:

6. if
$$\max_{s,a} |Q_{\mathrm{old}}\left(s,a\right) - Q_{\mathrm{new}}\left(s,a\right)| < \epsilon$$

7. return
$$Q_{\text{new}}$$
 $Q_{\infty}^*(s,a)$ 8. $Q_{\text{old}} \leftarrow Q_{\text{new}}$

$$oxed{return} \ oxed{Q}_{ ext{new}}$$

$$\mathrm{Q}^*_\infty(s,a)$$

$$\mathrm{Q}_{\mathrm{old}} \, \leftarrow \mathrm{Q}_{\mathrm{new}}$$

V values vs. Q values

- V is defined over state space; Q is defined over (state, action) space.
- $V_h^*(s)$ can be derived from $Q_h^*(s,a)$:, and vise versa.
- Q^* is easier to read "optimal actions" from.
- We care more about V^{π} and Q^*

${ m V}_{61}^{\uparrow}(s)$	0.00	0.00	9.98
	0.00	0.00	-2.81
	0.00	0.00	-2.53
$\mathrm{V}^*_{61}(s)$	8.08	8.98	9.98
	7.27	8.08	-1.20

${ m V}_{62}^{\uparrow}(s)$	0.00	0.00	9.99
	0.00	0.00	-2.81
	0.00	0.00	-2.53

 ${
m V}_{\infty}^{\uparrow}(s)$

 $\mathrm{V}^*_\infty(s)$

0.00	0.00	10.00
0.00	0.00	-2.80
0.00	0.00	-2.52

8.08	8.98	9.98
7.27	8.08	-1.20
6.54	7.27	6.54

$\mathrm{V}^*_{62}(s)$	8.09	8.99	9.99
	7.28	8.09	-1.19
	6.55	7.28	6.55

8.10	9.00	10.00
7.29	8.10	-1.18
6.56	7.29	6.56

$\mathrm{V}_h^*(s)$)=ma	$\operatorname{ax}_a[\operatorname{Q}$	$Q_h^*(s,a)$

$\mathrm{Q}^*_{61}(s,a)$		7.27		The same	8.08	and the same of th		9.98	/
$\mathbf{a}_{61}(s, a)$	7.27	X	8.08	7.27	\times	8.98	9.08	\times	9.98
		6.54	A. A		7.27	San		-0.08	The same of
	The same of the sa	7.27		The state of the s	8.08		The same of the sa	-1.20	1
	6.54	X	7.27	6.54	\times	-1.08	-2.73	\times	-11.0
		5.89	· · · · · · · · · · · · · · · · · · ·		6.54			-4.11	San
	1	6.54			7.27			-1.08	/
	5.89	X	6.54	5.89	\times	5.89	6.54	\times	5.89
		5.89	· Andrews	1	6.54			5.89	1

$$Q_{62}^*(s,a)$$
 7.28 8.09 7.28 8.99 9.09 9.99 $Q_{\infty}^*(s,a)$ 7.28 8.09 7.28 8.99 9.09 9.09 9.99 $Q_{\infty}^*(s,a)$ 7.28 8.09 7.28 8.09 1.19 6.55 7.28 6.55 1.08 2.72 11.08 6.55 7.28 6.55 7.28 1.08 9.5.89 6.55 5.89 5.89 6.55 5.89

7.29	8.10	10.00
7.29 8.10	7.29 9.00	9.10 10.00
6.56	7.29	-0.06
7.29	8.10	-1.18
6.56 7.29	6.56 -1.06	-2.71 -11.06
5.90	6.56	-4.10
6.56	7.29	-1.06
5.90 6.56	5.90 5.90	6.56 5.90
5.90	6.56	5.90

$$\pi_h^*(s) = rg \max_a \left[\mathrm{Q}_h^*(s,a)
ight]$$

Summary

- Markov decision processes (MDP) is nice mathematical framework for making sequential decisions. It's the foundation to reinforcement learning.
- An MDP is defined by a five-tuple, and the goal is to find an optimal policy that leads to high expected cumulative discounted rewards.
- To evaluate how good a *given* policy π , we can calculate $V^{\pi}(s)$ via
 - the summation over rewards definition
 - Bellman recursion for finite horizon, equation for infinite horizon
- To *find* an optimal policy, we can recursively find $Q^*(s, a)$ via the value iteration algorithm, and then act greedily w.r.t. the Q^* values.

We'd love to hear

your thoughts.
Thanks!