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Toddler demo, Russ Tedrake thesis, 2004
(Uses vanilla policy gradient (actor-critic))
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https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4
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Reinforcement Learning with Human Feedback
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https://say-can.github.io/img/demo_sequence_compressed.mp4
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https://say-can.github.io/img/demo_sequence_compressed.mp4
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Markov Decision Processes

Research area initiated in the 50s by Bellman, known under various names:

Stochastic optimal control (Control theory)

Stochastic shortest path (Operations research)

Sequential decision making under uncertainty (Economics)

Reinforcement learning (Artificial intelligence, Machine learning)

A rich variety of accessible and elegant theory, math, algorithms, and applications. But

also, considerable variation in notations.

We will use the most RL-flavored notations.
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(state, action) results in a transition  into a next state:T

Normally, we get to the “intended” state;

E.g., in state (7), action “↑” gets to state (4)

If an action would take Mario out of the grid world, stay put;

E.g., in state (9), “→” gets back to state (9)

In state (6), action “↑” leads to two possibilities:

20% chance to (2)

80% chance to (3).

80%
20%

Running example: Mario in a grid-world

9 possible states s

4 possible actions : {Up ↑, Down ↓, Left ←, Right →}a

1 2 3

4 5 6

7 8 9

10



(state, action) pairs give rewards:

in state 3, any action gives reward 1

in state 6, any action gives reward -10

any other (state, action) pair gives reward 0

1

1
1 1

−10

−10
−10 −10

reward of (3, )↓reward of )(3, ↑

reward of )(6, ↓

reward of )(6, →

discount factor: a scalar that reduces the "worth" of rewards, depending on the
timing Mario gets the rewards.

e.g., say this factor is 0.9. then, for (3, ) pair, Mario gets a reward of 1 at the start
of the game; at the 2nd time step, a discounted reward of 0.9; at the 3rd time step,
it is further discounted to , and so on.

←

(0.9)2
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Mario in a grid-world, cont'd



 : state space, contains all possible states .S s

 : action space, contains all possible actions .A a

Markov Decision Processes - Definition and terminologies

In 6.390,

 and  are small discrete sets,
unless otherwise specified.
S A
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 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state  to  when action  is taken.

S s

A a

T s, a, s( ′) s s′ a

Markov Decision Processes - Definition and terminologies

80%
20%

T 7, ↑, 4 =( ) 1

T 9, →, 9 =( ) 1

T 6, ↑, 3 =( ) 0.8

T 6, ↑, 2 =( ) 0.2

1 2 3

4 5 6

7 8 9

In 6.390,

 and  are small discrete sets,
unless otherwise specified.
S A

 and  are short-hand for the next-
timestep
s′ a′
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 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state  to  when action  is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s( ′) s s′ a

R(s, a)

Markov Decision Processes - Definition and terminologies

reward of )(3, ↑

reward of )(6, →

R 3, ↑ =( ) 1

R 6, → =( ) −10

In 6.390,

 and  are small discrete sets,
unless otherwise specified.

 and  are short-hand for the next-
timestep

S A

s′ a′

 is deterministic and bounded.R(s, a)

1
1

1
1

-10
-10

-10
-10
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 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state  to  when action  is taken.

 : reward, takes in a (state, action) pair and returns a reward.

S s

A a

T s, a, s( ′) s s′ a

R(s, a)

: discount factor, a scalar.γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

The goal of an MDP is to find a "good" policy.

Markov Decision Processes - Definition and terminologies

In 6.390,

 and  are small discrete sets,
unless otherwise specified.

 and  are short-hand for the next-
timestep

 is deterministic and bounded.

S A

s′ a′

R(s, a)

 is deterministic.π(s)
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a =t π(s )t

r =t R(s , a )t t

Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

a trajectory (aka, an experience, or a rollout), of horizon 
   

h

τ = s , a , r , s , a , r ,… s , a , r( 0 0 0 1 1 1 h−1 h−1 h−1)

time

initial state
all depends on π

16

…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Pr s = s ∣ s = s, a = a =( t
′

t−1 t−1 )
T s, a, s( ′)



Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

time
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…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy  for  time steps?s0 π h

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 …+ + + + γ R(s , a )h−1
h−1 h−1+One idea:



Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

time
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…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy  for  time steps?s0 π h

But in
Mario game: 80%20%

1 2 3

4 5 6

7 8 9
6

↑

−10

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 …+ + + + γ R(s , a )h−1
h−1 h−1+One idea:

1
1

1
1

-10
-10

-10
-10

??

if start at  and
policy ,
i.e., always up

s =0 6
π(s) =↑, ∀s



R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 …+ + + + γ R(s , a )h−1
h−1 h−1+E[ ]

in 390, this expectation is only w.r.t. the transition probabilities T s, a, s( ′)

 termsh

Policy π(s)

Transition T s, a, s( ′)

Reward R(s, a)

time
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…

s2 s3 s4 s5

a2 a3 a4

r2 r3 r4

s0 s1

a0 a1

r1

sh−2

ah−2

rh−2

sh−1

ah−1

rh−1r0

Starting in a given , how "good" is it to follow a policy  for  time steps?s0 π h
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Definition: For a given policy  the state value functionsπ(s),

V (s) :=h
π E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t ( t ( t)) 0 ]

value functions : the expected sum of discounted rewards, starting in

state  and follow policy  for  steps.

V (s)h
π

s, π h

horizon-0 values defined as 0.

value is long-term, reward is short-term (one-time).

R(s , a )0 0 γR(s , a )1 1 γ R(s , a )3
3 3γ R(s , a )2

2 2 …+ + + + γ R(s , a )h−1
h−1 h−1+

21

E[ ]



horizon  = 0: no step lefth
0 0

000

00

0

0
V (s) =0
↑ 0

horizon  = 1: receive the rewardsh
0 0

000

00

1

−10

22

V (s) =1
↑ R(s, ↑)

expanded form R(s , a )0 0 γR(s , a )1 1 γ R(s , a )2
2 2 …+ + +E[ ]

 termsh

evaluate the " , for all     i.e. the always " policyπ(s) =↑ s, ↑

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ",   ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%



0

0

R(1, ↑) + γR(1, ↑)

0

R(2, ↑) + γR(2, ↑)

1.9

23

R(3, ↑) + γR(3, ↑)

0

R(4, ↑) + γR(1, ↑) = 1 + 0.9 ∗ (1) = 1.9

R(5, ↑) + γR(2, ↑)

R(s , a )0 0 γR(s , a )1 1+E[ ]

 terms inside2

V (s) =2
↑

horizon h = 2 :

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ",   ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%



−900

−9.28

R(6, ↑) + γ[.2R(2, ↑) + .8R(3, ↑)]

R(8, ↑) + γR(5, ↑)R(7, ↑) + γR(4, ↑) R(9, ↑) + γR(6, ↑)

action ↑

R(3, ↑)γ

action ↑

R(2, ↑)γ

= −10 + 0.9 ∗ (0.2 ∗ 0 + 0.8 ∗ 1)

= −9.28

24

?

= 0 + 0.9 ∗ (−10)

20%
2

80%
3action ↑

R(6, ↑)

6

R(s , a )0 0 γR(s , a )1 1+E[ ]

 terms inside2

V (s) =2
↑

0 0 1.9

00

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ",   ∀s
γ = 0.9

states and
one special transition:

rewards

horizon h = 2 :

1
1

1
1

-10
-10

-10
-10

80%20%



action ↑

action ↑

γ R(3, ↑2 )

action ↑ action ↑

action ↑

20%

80%

R(6, ↑)V (6)3
↑

γR(2, ↑)20%+ +

γR(2, ↑) γ R(2, ↑2 )

γR(3, ↑)

25

80%

R(s , a )0 0 γR(s , a )1 1 +E[ ]γ R(s , a )2
2 2+

R(6, ↑)

+ R(2, ↑) + γR(2, ↑)[ ]γ20% R(3, ↑) + γR(3, ↑)[ ]= γ+ 80%R(6, ↑)

80%= γ20%+ V (2)2
↑ γ+ V (3)2

↑R(6, ↑)

6

2

33

2

γ R(2, ↑2 )γR(3, ↑) 20%+ 80% γ R(3, ↑2 )+=

R(6, ↑) γR(2, ↑)20%+ + γ R(2, ↑2 ) γR(3, ↑)80%+ γ R(3, ↑2 )= +[ ] ][

horizon h = 3 :

1 2 3

4 5 6

7 8 9

π(s) = ‘‘ ↑ ",   ∀s
γ = 0.9

states and
one special transition:

rewards
1
1

1
1

-10
-10

-10
-10

80%20%



V (s) =h
π R s,π(s) +( ) γ T s,π(s), s V s

s′

∑ ( ′) h−1
π ( ′)

horizon-  value in state : the expected
sum of discounted rewards, starting in
state  and following policy  for  steps.

h s

s π h

the immediate reward for
taking the policy-prescribed
action  in state .π(s) s

sum up future values weighted by the
probability of getting to that next state 

 
s′

 horizon future
values at a next state 
(h− 1)

s′

discounted by  γ

V (6)3
↑ = 80%γ20%+

26

V (2)2
↑ γ+ V (3)2

↑R(6, ↑)



V (s) =h
π R s,π(s) +( ) γ T s,π(s), s V s , ∀s

s′

∑ ( ′) h−1
π ( ′)Bellman Recursion

V (s)2
↑

V (s)3
↑ V (s)4

↑ V (s)5
↑

V (s)6
↑

−7.048 = −10 + .9[.2 ∗ 0 + 0.8 ∗ 4.10]

V (s)61
↑ V (s)62

↑

…

27

V (s) =1
↑ R(s, ↑)

V (6) =6
↑ R(6, ↑) + γ[.2V (2) +5

↑ .8 × V (3)]5
↑



approaches infinity

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ ( ′) ∞
π ( ′)

 many linear equations, one equation for each state∣S∣

typically  in MDP definition, motivated to make 
 finite.

γ < 1
V (s) :=∞

π E γ R s ,π s ∣ s = s,π[∑t=0
∞ t ( t ( t)) 0 ]

Bellman Equations

If the horizon  goes to infinityh

V (s) =h
π R s,π(s) +( ) γ T s,π(s), s V s , ∀s

s′

∑ ( ′) h−1
π ( ′)Bellman Recursion

V (s)∞
↑

−2.8 = V (6) =∞
↑ R(6, ↑) + γ[.2V (2) +∞

↑ .8 × V (3)]∞
↑ = −10 + .9[.2 × 0 + .8 ∗ 10]

10 = V (3) =∞
↑ R(3, ↑) + γ[V (3)] =∞

↑ 1 + .9 × 10

−2.52 = V (9) =∞
↑ R(9, ↑) + γ[V (6)] =∞

↑ 0 + .9 × (−2.8)
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finite-horizon Bellman recursions  infinite-horizon Bellman equations 

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ ( ′) ∞
π ( ′)V (s) =h

π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ ( ′) h−1
π ( ′)

Recall: For a given policy  the (state) value functionsπ(s),

V (s) :=h
π E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t ( t ( t)) 0 ]

π(s) V (s)h
π

MDP
Policy evaluation

Quick summary

1. By summing  terms:h

2. By leveraging structure:

29
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An MDP has a unique optimal value .V (s)h
∗

Optimal policy  might not be unique (think, e.g. symmetric world).π∗

For finite , optimal policy  depends on how many time steps left.h πh
∗

When , time no longer matters, i.e., there exists a stationary .h→∞ π∗

Under optimal policy, recursion holds too 

Optimal policy π∗

Definition: for a given MDP and a fixed horizon  (possibly infinite),  is an optimal policy

if  for all   and for all possible policy .

h π∗

V (s) =h
π∗ V (s) ⩾h

∗ V (s)h
π s ∈ S π

V (s) =h
∗ R(s,π (s)) +∗ γ T s,π (s), s V s , ∀s,h

s′

∑ ( ∗ ′) h−1
∗ ( ′)

31



One idea: enumerate over all , do policy evaluation, compare  get π V ,π V (s)∗

tedious, and even with ... not super clear how to actV (s)∗

How to search for an optimal policy ?π∗

V (s) =h
∗ R(s,π (s)) +∗ γ T s,π (s), s V s , ∀s,h

s′

∑ ( ∗ ′) h−1
∗ ( ′)

Definition: for a given MDP and a fixed horizon  (possibly infinite),  is an optimal policy

if  for all   and for all possible policy .

h π∗

V (s) =h
π∗ V (s) ⩾h

∗ V (s)h
π s ∈ S π

V (s)∞
∗V (s)62

∗V (s)61
∗

…
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Optimal state-action value functions Q (s, a)h
∗

: the expected sum of discounted rewards forQ (s, a)h
∗

starting in state ,s

take action , for one stepa

act optimally there afterwards for the remaining  steps(h− 1)

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a , ∀s, a,h∑s′ ( ′) a′ h−1

∗ ( ′ ′)

34



recursively finding Q (s, a)h
∗

: the expected sum of discounted rewards forQ (s, a)h
∗

Q (s, a)0
∗

Recall:

1 2

987

54

3

6

80%
20%

γ = 0.9

1

1
1 1

−10

−10

−10
−10

States and
one special
transition:

R(s, a)

35

Q (s, a)1
∗

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)



0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)2
∗

Let's consider Q (3, →2
∗ )

receive R(3, →)

= 1 + .9max Q 3, aa′ 1
∗ ( ′)

next state  = 3, act optimally for the
remaining one timestep

receive 

s′

max Q 3, aa′ 1
∗ ( ′)

= 1.9

Recall: γ = 0.9

States and
one special
transition:

36

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

Q (3, →2
∗ ) = R(3, →)  + γmax Q 3, aa′ 1

∗ ( ′)

Q (s, a)1
∗ = R(s, a)

1 2 3

4 5 6

7 8 9

80%20%

1.9

: the value forQ (s, a)h
∗



Let's consider Q (3, ↑2
∗ )

receive R(3, ↑)

= 1 + .9max Q 3, aa′ 1
∗ ( ′)

next state  = 3, act optimally for the
remaining one timestep

receive 

s′

max Q 3, aa′ 1
∗ ( ′)

= 1.9

1.9

Recall:

1 2

987

54

3

6

80%
20%

37

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

Q (3, ↑2
∗ ) = R(3, ↑)  + γmax Q 3, aa′ 1

∗ ( ′)

1.9
0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)Q (s, a)1
∗ Q (s, a)2

∗

: the value forQ (s, a)h
∗



0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Let's consider Q (3, ←2
∗ )

receive R(3, ←)

= 1 + .9max Q 2, aa′ 1
∗ ( ′)

next state  = 2, act optimally for the
remaining one timestep

receive 

s′

max Q 2, aa′ 1
∗ ( ′)

= 1

1

Recall:

1 2

987

54

3

6

80%
20%

38

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

Q (3, ←2
∗ ) = R(3, ←)  + γmax Q 2, aa′ 1

∗ ( ′)

1.9
1.9

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)



receive R(3, ↓)

Let's consider Q (3, ↓2
∗ )

= 1 + .9max Q 6, aa′ 1
∗ ( ′)

next state  = 6, act optimally for
the remaining one timestep

receive 

s′

max Q 6, aa′ 1
∗ ( ′)

= −8

−8

Recall:

1 2

987

54

3

6

80%
20%

39

γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

Q (3, ↓2
∗ ) = R(3, ↓)  + γmax Q 2, aa′ 1

∗ ( ′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

1
1.9
1.9

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)



receive R(6, ↑)

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

−8
1
1.9
1.9

Recall:

1 2

987

54

3

6

80%
20%

40

γ = 0.9

States and
one special
transition:

act optimally for one more timestep,
at the next state  s′

20% chance,  = 2, act optimally,
receive 

s′

max Q 2, aa′ 1
∗ ( ′)−9.28

= −10 + .9[.2 × 0 + .8 × 1] = −9.28

Let's consider Q (6, ↑2
∗ )  = R(6, ↑)  + γ[.2max Q 2, a +a′ 1

∗ ( ′) .8max Q 3, a ]a′ 1
∗ ( ′)

80% chance,  = 3, act optimally,
receive 

s′

max Q 3, aa′ 1
∗ ( ′)

: the value forQ (s, a)h
∗

Q (s, a)2
∗Q (s, a)1

∗ = R(s, a)



Q (6, ↑2
∗ ) = R(6, ↑)  + γ[.2max Q 2, a +a′ 1

∗ ( ′) .8max Q 3, a ]a′ 1
∗ ( ′)

1.9
1.9

1
−8

−9.28

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a , ∀s, a,h∑s′ ( ′) a′ h−1

∗ ( ′ ′)in general 

Recall:

1 2

987

54

3

6

80%
20%
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γ = 0.9

States and
one special
transition:

starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a)1
∗

= R(s, a)

Q (s, a)2
∗

: the value forQ (s, a)h
∗



starting in state ,
take action , for one step
act optimally there afterwards for the remaining  steps

s

a

(h− 1)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

= R(s, a)
1.9

1.9
1
−8

−9.28

Recall:

1 2

987

54

3

6

80%
20%
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γ = 0.9

States and
one special
transition:

Q (s, a)1
∗ Q (s, a)2

∗

π (s) =h
∗ argmax Q (s, a), ∀s,ha h

∗

what's the optimal action in state 3, with horizon 2, given by 
 

π (3) =2
∗ ?

in general 

either up or right 

: the value forQ (s, a)h
∗



Outline
Markov Decision Processes Definition, terminologies, and policy

Policy Evaluation

State Value Functions 

Bellman recursions and Bellman equations

Policy Optimization

Optimal policies 

Optimal action value functions: 

Value iteration

Vπ

π∗

Q∗
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Given the recursion

Q (s, a) =∞
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ ∞

∗ ( ′ ′)

1. for   :
2.       
3. while True:
4.       for   :
5.             
6.       if 
7.             return 
8.       

s ∈ S, a ∈ A

Q (s, a) =old  0

s ∈ S, a ∈ A

Q (s, a) ←new  R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ old  ( ′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old  new  ∣ ϵ :

Qnew 

Q ←old  Qnew 

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ ( ′) a′ h−1

∗ ( ′ ′)

we can have an infinite horizon equation 

Value Iteration

if run this block  times
and break, then the

returns are exactly 

h

Qh
∗ {

Q (s, a)∞
∗
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 values vs.  valuesV Q

 is defined over state space;  is defined over (state, action) space.V Q

 can be derived from , and vise versa.  V (s)h
∗ Q (s, a) :h

∗

 is easier to read "optimal actions" from.Q∗

We care more about  and Vπ Q∗

45



V (s)61
↑ V (s)62

↑ V (s)∞
↑

V (s)61
∗ V (s)62

∗ V (s)∞
∗

Q (s, a)61
∗ Q (s, a)62

∗ Q (s, a)∞
∗

 
V (s) =h
∗ max Q (s, a)a [ h

∗ ]

 
π (s) =h
∗ argmax Q (s, a)a [ h

∗ ]
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Summary
Markov decision processes (MDP) is nice mathematical framework for making

sequential decisions. It's the foundation to reinforcement learning.

An MDP is defined by a five-tuple, and the goal is to find an optimal policy that

leads to high expected cumulative discounted rewards. 

To evaluate how good a given policy  we can calculate  via

the summation over rewards definition

Bellman recursion for finite horizon, equation for infinite horizon

To find an optimal policy, we can recursively find  via the value iteration

algorithm, and then act greedily w.r.t. the  values.

π, V (s)π

Q (s, a)∗

Q∗
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https://forms.gle/DefAyvq8KA9kg37X8

Thanks!
We'd love to hear

your thoughts.
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https://forms.gle/DefAyvq8KA9kg37X8

