
https://introml.mit.edu/

Intro to Machine Learning
Lecture 11: Reinforcement Learning

Shen Shen

April 25, 2025
11am, Room 10-250

1

https://introml.mit.edu/

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

ϵ

Reinforcement learning setup again

2

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

: discount factor, a scalar.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

The goal of an MDP is to find a "good" policy.

Markov Decision Processes - Definition and terminologies

In 6.390,

 and are small discrete sets,
unless otherwise specified.

 and are short-hand for the next-
timestep

 is deterministic and bounded.
 is deterministic.

S A

s′ a′

R(s, a)

π(s)

3

V (s) =h
π R s,π(s) +() γ T s,π(s), s V s

s′

∑ (′) h−1
π (′)

horizon- value in state : the expected
sum of discounted rewards, starting in
state and following policy for steps.

h s

s π h

the immediate reward for
taking the policy-prescribed
action in state .π(s) s

sum up future values weighted by the
probability of getting to that next state

s′

 horizon future
values at a next state
(h− 1)

s′

discounted by γ

4

finite-horizon Bellman recursions infinite-horizon Bellman equations

V (s) =∞
π R(s,π(s)) + γ T s,π(s), s V s , ∀s

s′

∑ (′) ∞
π (′)V (s) =h

π R(s,π(s)) + γ T s,π(s), s V s , ∀s
s′

∑ (′) h−1
π (′)

Recall: For a given policy the (state) value functionsπ(s),

V (s) :=h
π E γ R s ,π s ∣ s = s,π , ∀s,h[∑t=0

h−1 t (t (t)) 0]

π(s) V (s)h
π

MDP
Policy evaluation

5

1. By summing terms:h

2. By leveraging structure:

Given the recursion

Q (s, a) =∞
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ ∞

∗ (′ ′)

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

Q (s, a) =h
∗ R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ h−1

∗ (′ ′)

we can have an infinite-horizon equation

Value Iteration

if run this block times
and break, then the

returns are exactly

h

Qh
∗ {

Q (s, a)∞
∗

6

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

7

(state, action) results in a transition into a next state:

Normally, we get to the “intended” state;

E.g., in state (7), action “↑” gets to state (4)

If an action would take Mario out of the grid world, stay put;

E.g., in state (9), “→” gets back to state (9)

In state (6), action “↑” leads to two possibilities:

20% chance to (2)

80% chance to (3)

1 2

987

54

3

6

80%
20%

8

Running example: Mario in a grid-world

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}

Recall

(state, action) pairs give out rewards:

in state 3, any action gives reward 1

in state 6, any action gives reward -10

any other (state, action) pair gives reward 0

9

1

1
1 1

−10

−10
−10 −10

reward of (3,)↓reward of)(3, ↑

reward of)(6, ↓

reward of)(6, →

discount factor: a scalar of 0.9 that reduces the "worth" of rewards, depending
on the timing we receive them.

e.g., for (3,) pair, we receive a reward of 1 at the start of the game; at the
2nd time step, we receive a discounted reward of 0.9; at the 3rd time step,
it is further discounted to , and so on.

←

(0.9)2

Mario in a grid-world, cont'd

transition probabilities are unknown

Running example: Mario in a grid-world
Reinforcement learning setup

9 possible states

4 possible actions: {Up ↑, Down ↓, Left ←, Right →}

rewards unknown

discount factor γ = 0.9

Now

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

10

1 2 3

4 5 6

7 8 9

???

…
?

 : state space, contains all possible states .

 : action space, contains all possible actions .

 : the probability of transition from state to when action is taken.

 : reward, takes in a (state, action) pair and returns a reward.

: discount factor, a scalar.

S s

A a

T s, a, s(′) s s′ a

R(s, a)

γ ∈ [0, 1]

 : policy, takes in a state and returns an action.π(s)

The goal of an MDP problem is to find a "good" policy.

Markov Decision Processes - Definition and terminologies

Reinforcement Learning

RL

11

Reinforcement learning is very general:

robotics games
social sciences

chatbot (RLHF) health care ...

12

https://s3.amazonaws.com/media-p.slid.es/videos/1146306/TkgXlQ2O/toddler.mp4

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

13

Model-Based Methods

Keep playing the game to approximate the unknown rewards and transitions.

e.g. observe what reward is received from taking the pair, we get r (6, ↑) R(6, ↑)

Transitions are a bit more involved but still simple:

Rewards are particularly easy:

 e.g. play the game 1000 times, count the # of times that (start in state 6, take
action, end in state 2), then, roughly,

↑
T(6, ↑, 2) = (that count/1000)

MDP-

Now, with and estimated, we're back in MDP setting.R T

(for solving RL)

In Reinforcement Learning:

Model typically means the MDP tuple
What's being learned is not usually called a hypothesis—we simply refer to it as the value or policy.

⟨S,A, T,R, γ⟩

14

[A non-exhaustive, but useful taxonomy of algorithms in modern RL.]Source

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

We will focus on
(tabular) Q-learning,
and to a lesser extent
touch on deep/fitted Q-
learning like DQN.

15

https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

16

Is it possible to get an optimal policy without learning transition or rewards explicitly?

We kinda know a way already:

With , we can back out easily (greedily no need of transition or rewards)Q∗ π∗ argmaxQ ,∗

17

But...

didn't we arrive at by value iteration; Q∗

18

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

Value Iteration

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

and didn't value iteration rely on transition and rewards explicitly?

19

Without and , how about we approximate like so:R T

pick an pair(s, a)

execute (s, a)

observe and r s′

update:

target

Indeed, value iteration relied on having full access to and R T

(we will see this idea has issues)

Q (s, a) ←new R(s, a) + γ T s, a, s Q s , a
s′

∑ (′)
a′
max old (′ ′)

Q (s, a) ← r +new γ Q s , a
a′
max old (′ ′)

20

γ = 0.9

Let's try

Q (s, a)old

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

21

execute ,
observe a reward

(3, ↑)

r = 1

Q (s, a)new

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)States & unknown transition:

unknown rewards:

1 2 3

4 5 6

7 8 9

?

?

?
…

?

−9.1

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

execute (6, ↑)

update as:Q(6, ↑)

−10 + 0.9max Q 3, aa′ old (′)

= -10 + 0.9 = -9.1

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 3

 γ = 0.9

Q (s, a)old Q (s, a)new

22

Let's try
1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-9.1
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)

execute (6, ↑)

update as:Q(6, ↑)

−10 + 0.9max Q 2, aa′ old (′)

= -10 + 0 = -10

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 2

 γ = 0.9

Q (s, a)old Q (s, a)new

−10

23

Let's try
1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

−9.1

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

execute (6, ↑)

update as:Q(6, ↑)

−10 + 0.9max Q 3, aa′ old (′)

= -10 + 0.9 = -9.1

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 3

 γ = 0.9

Q (s, a)old Q (s, a)new

24

Let's try
1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-9.1
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)

execute (6, ↑)

update as:Q(6, ↑)

−10 + 0.9max Q 2, aa′ old (′)

= -10 + 0 = -10

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 2

 γ = 0.9

Q (s, a)old Q (s, a)new

−10

25

Let's try
1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

−9.1

Q (s, a) ←new r + γ Q s , a
a′
max old (′ ′)

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

execute (6, ↑)

update as:Q(6, ↑)

−10 + 0.9max Q 3, aa′ old (′)

= -10 + 0.9 = -9.1

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 3

 γ = 0.9

Q (s, a)old Q (s, a)new

26

Let's try
1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

Q (s, a) ←new R(s, a) + γ T s, a, s Q s , a
s′

∑ (′)
a′
max old (′ ′)

Value iteration relies on having full access to and R T

Without and , perhaps we could execute , observe and R T (s, a) r s′

but the target keeps "washing away" the old progress. 🥺

+ γ Q s , a
a′
max old (′ ′)r

target

Q (s, a)new ←

27

α

Q (s, a) ←new R(s, a) + γ T s, a, s Q s , a
s′

∑ (′)
a′
max old (′ ′)

target

(1 − α) ()
old belief learning rate

😍

28

core update rule of Q-learning

+ + γ Q s , a
a′
max old (′ ′)r←Q (s, a)new

Value iteration relies on having full access to and R T

Without and , perhaps we could execute , observe and R T (s, a) r s′

Q (s, a)old

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

29

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

execute (6, ↑)

update as:Q(6, ↑)

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 3

 γ = 0.9

Q (s, a)old Q (s, a)new

1 2 3

4 5 6

7 8 9

?

?

?
…

?

30

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

e.g. pick α = 0.5

(−10+

= -5 + 0.5(-10 + 0.9)= - 9.55

(1-0.5) * -10 + 0.5 0.9max Q 3, a)a′ old (′)

Q-learning update

−9.55

(1-0.5) * -9.55

−9.775

execute (6, ↑)

update as:Q(6, ↑)

observe reward , next state r = −10 s =′ 2

 γ = 0.9

Q (s, a)old Q (s, a)new

1 2 3

4 5 6

7 8 9

?

?

?
…

?

31

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

e.g. pick α = 0.5

(−10+

= -4.775 + 0.5(-10 + 0)= - 9.775

+ 0.5

Q-learning update

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-9.55
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0 0.9max Q 2, a)a′ old (′)

To update the estimate of :Q(6, ↑)

(1-0.5) * -9.775

−9.8875

execute (6, ↑)

update as:Q(6, ↑)

To update the estimate of :Q(6, ↑)

observe reward , next state r = −10 s =′ 2

 γ = 0.9

Q (s, a)old Q (s, a)new

32

1 2 3

4 5 6

7 8 9

?

?

?
…

? 0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-10
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

rewards now known

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

e.g. pick α = 0.5

(−10+

= -4.8875 + 0.5(-10 + 0)= - 9.8875

+ 0.5 0.9max Q 2, a)a′ old (′)

Q-learning update

0
0

0
0

0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

-9.775
-10

-10
-10

0
0

0
0

0
0

0
0

0
0

0
0

1. for :
2.
3. while True:
4. for :
5.
6. if
7. return
8.

s ∈ S, a ∈ A

Q (s, a) =old 0

s ∈ S, a ∈ A

Q (s, a) ←new R(s, a) + γ T s, a, s max Q s , a∑s′ (′) a′ old (′ ′)

max Q (s, a) −Q (s, a) <s,a ∣ old new ∣ ϵ :

Qnew

Q ←old Qnew

"calculating" "learning" (estimating)

1.
2. for
3.
4.
5. while
6.
7.
8.
9.
10.
11.
12. return

i = 0

s ∈ S, a ∈ A :

Q (s, a) =old 0

s← s0

i < max-iter :

a← select_action(s, Q (s, a))old

r, s ←′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old α(r + γmax Q (s , a))a′ old
′ ′

s ← s′

i ← (i+ 1)

Q ←old Qnew

Qnew

Q-Learning S,A, γ,α, s max-iter)(0Value Iteration(S,A, T,R, γ, ϵ)

33

"learning"

Q-Learning S,A, γ,α, s max-iter)(0

1.
2. for
3.
4.
5. while
6.
7.
8.
9.
10.
11.
12. return

i = 0

s ∈ S, a ∈ A :

Q (s, a) =old 0

s← s0

i < max-iter :

a← select_action(s, Q (s, a))old

r, s ←′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old α(r + γmax Q (s , a))a′ old
′ ′

s ← s′

i ← (i+ 1)

Q ←old Qnew

Qnew

Remarkably, 👈 can converge to the
true infinite-horizon -values . Q∗ 1

 given we visit all infinitely often, and satisfy
a decaying condition on the learning rate .

1 s, a
α

Once converged, act greedily w.r.t again.Q∗

We also only ever update an entry by
"playing" it.

(s, a)

But convergence can be extremely slow;

What if we are impatient, or resource
constrained?

34

"learning"

Q-Learning S,A, γ,α, s max-iter)(0

1.
2. for
3.
4.
5. while
6.
7.
8.
9.
10.
11.
12. return

i = 0

s ∈ S, a ∈ A :

Q (s, a) =old 0

s← s0

i < max-iter :

a← select_action(s, Q (s, a))old

r, s ←′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old α(r + γmax Q (s , a))a′ old
′ ′

s ← s′

i ← (i+ 1)

Q ←old Qnew

Qnew

During learning, especially in early stages,
we'd like to explore, and observe diverse

) consequences.(s, a

During later stages, can act more greedily
w.r.t. the estimated Q values

35

-greedy action selection strategy:

with probability , choose an action
 uniformly at random

with probability , choose

ϵ

ϵ a ∈

A

1 − ϵ

argmax Q (s, a)a old

 controls the trade-off between
exploration vs. exploitation.
ϵ

the current estimate of valuesQ

"learning"

Q-Learning S,A, γ,α, s max-iter)(0

1.
2. for
3.
4.
5. while
6.
7.
8.
9.
10.
11.
12. return

i = 0

s ∈ S, a ∈ A :

Q (s, a) =old 0

s← s0

i < max-iter :

a← select_action(s, Q (s, a))old

r, s ←′ execute(a)

Q (s, a) ←new (1 − α)Q (s, a) +old α(r + γmax Q (s , a))a′ old
′ ′

s ← s′

i ← (i+ 1)

Q ←old Qnew

Qnew

36

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

37

So far, Q-learning is only kinda sensible for (small) tabular setting.

What do we do if and/or are large, or even continuous?S A

Notice that the key update line in Q-learning algorithm:

is equivalently:

+ −()←new belief learning rate old beliefold belief target

Q (s, a) ←new Q (s, a) +old α [r + γmax Q (s , a)] − Q (s, a)(a′ old
′ ′

old)

38

Q (s, a) ←new (1 − α)Q (s, a) +old α r + γ Q s , a(
a′
max old (′ ′))

r + γmax Q s , aa′ θ (′ ′)

old belieftargetlearning rateold belief + −()

39

new belief ←

Reminds us of: when minimizing (target − guess)θ 2

Generalize tabular Q-learning for continuous state/action space:

target − Q (s, a)(θ)2

Gradient descent does: θ ←new θ +old η(target − guess)θ dθ

d(guess)

1. parameterize Q (s, a)θ

2. execute observe construct the target(s, a), (r, s),′

3. regress against the target, i.e. update via

gradient-descent methods to minimize

Q (s, a)θ θ

Q (s, a) ←new Q (s, a) +old α [r + γmax Q (s , a)] − Q (s, a)(a′ old
′ ′

old)

40

Outline
Recap: Markov decision processes

Reinforcement learning setup

Model-based methods

Model-free methods

(tabular) Q-learning

-greedy action selection

exploration vs. exploitation

(neural network) Q-learning

Reinforcement learning setup again

ϵ

41

42

If no direct supervision is available?

Strictly RL setting. Interact, observe, get data, use rewards as "coy" supervision signal.

43

[Slide Credit: Yann LeCun]
44

Reinforcement learning has a lot of challenges:

Data can be very expensive/tricky to get

sim-to-real gap

sparse rewards

exploration-exploitation trade-off

catastrophic forgetting

Learning can be very inefficient

temporal process, compound error

super high variance

learning process hard to stabilize

...

45

Summary
We saw, last week, how to find good in a known MDP: these are policies with high

cumulative expected reward.

In reinforcement learning, we assume we are interacting with an unknown MDP, but we

still want to find a good policy. We will do so via estimating the Q value function.

One problem is how to select actions to gain good reward while learning. This

“exploration vs exploitation” problem is important.

Q-learning, for discrete-state problems, will converge to the optimal value function (with

enough exploration).

“Deep Q learning” can be applied to continuous-state or large discrete-state problems by

using a parameterized function to represent the Q-values.

46

https://forms.gle/6snt5oZgS1N9nZY78

Thanks!
We'd love to hear

your thoughts.

47

https://forms.gle/6snt5oZgS1N9nZY78

