6.390 Midterm Review

Spring 2025 Haley Nakamura

Topic 1: IntroML

- ML: making predictions from data
- Training / validation / testing data
- Supervised learning
- Hypothesis / hypothesis class
- Learning algorithm
- Evaluation metrics
 - Loss functions
 - Overfitting vs. underfitting

$$egin{split} \mathcal{D}_{ ext{train}} &= \left\{ \left(x^{(1)},y^{(1)}
ight),\ldots,\left(x^{(n)},y^{(n)}
ight)
ight\} \ & x o ight[h] o y \ \mathcal{D}_{ ext{train}} &\longrightarrow igl[ext{learning alg}\left(\mathcal{H}
ight)igg] o h \ \mathcal{E}_{ ext{train}}(h;\Theta) &= rac{1}{n}\sum_{i=1}^n \mathcal{L}(h(x^{(i)};\Theta),y^{(i)}) \end{split}$$

Topic 2: Linear Regression

- Label: continuous real number

$$y=h(x; heta, heta_0)= heta^Tx+ heta_0$$

- Linear hypothesis class
- Objective function (e.g. MSE)

$$f(heta, heta_0) = rac{1}{n}\sum_{i=1}^n \left(heta^T x^{(i)} + heta_0 - y^{(i)}
ight)^2$$

n

- Closed-form/analytical solution (optimal)
- What if $X^T X$ is not invertible?

$$heta^* = ig(X^T Xig)^{-1} X^T Y$$

- Objective function has "half-pipe" shape instead of "bowl" shape

J

- Cases:
 - More features than data points
 - Features are linearly dependent

Topic 2: Linear Regression

- Add regularizer term

$$J_{ ext{ridge}}(heta, heta_0) = rac{1}{n}\sum_{i=1}^n \left(heta^T x^{(i)} + heta_0 - y^{(i)}
ight)^2 + \lambda \| heta\|^2$$

- λ as a hyperparameter

- Generalizable

$$heta_{ ext{ridge}} = ig(X^TX + n\lambda Iig)^{-1}X^TY$$

- Cross-validation

Topic 3: Gradient Descent

- Gradient vector (analytically and conceptually)
- Algorithm and update step $\theta^{(t+1)} = \theta^{(t)} \eta \nabla_{\theta} J(\theta)|_{\theta = \theta^{(t)}}$
- η as a hyperparameter
- Termination criterion
- Smooth, convex, sufficiently small learning rate, enough iterations, global min exists?
 - Converge to global minimum!
- What if these assumptions are violated?
- Stochastic gradient descent (what changes?)

Topic 4: Classification

 $h(x; heta, heta_0) = ext{step}(heta^T x + heta_0)$

 $z= heta^Tx+ heta_{ extsf{n}}$

- Binary classification: {1, 0}
- Linear classifier
 - Normal vector
- Logistic classifier
 - Sigmoid, NLL Loss
 - Magnitude of parameters?
- Multiclass:
 - Pick one: softmax, NLLM Loss
 - Pick many: multiple sigmoids

$h(x; heta, heta_0) = ext{step}(heta^T x + heta_0)$

Topic 4: Classification

- Binary classification: {1, 0}
- Linear classifier
 - Normal vector
- Logistic classifier
 - Sigmoid, NLL Loss
 - Magnitude of parameters?
- Multiclass:
 - Pick one: softmax, NLLM Loss
 - Pick many: multiple sigmoids

Topic 4: Classification

- Binary classification: {1, 0}
- Linear classifier
 - Normal vector
- Logistic classifier
 - Sigmoid, NLL Loss
 - Magnitude of parameters?
- Multiclass:
 - Pick one: softmax, NLLM Loss
 - Pick many: multiple sigmoids

Topic 4: Classification

- Binary classification: {1, 0}
- Linear classifier
 - Normal vector
- Logistic classifier
 - Sigmoid, NLL Loss
 - Magnitude of parameters?
- Multiclass:
 - Pick one: softmax, NLLM Loss
 - Pick many: multiple sigmoids

Topic 5: Features

- Nonlinear feature transformations
- (kth order) Polynomial basis

Not linearly separable in x space

Linearly separable in $\phi(x) = x^2$ space

- Computation graph
 - Neurons \rightarrow Layers
 - \rightarrow Network

- Computation graph
 - Neurons \rightarrow Layers
 - \rightarrow Network

- Computation graph -
 - Neurons \rightarrow Layers -
 - \rightarrow Network
- Network as a hypothesis -

(forward-pass)

- Output layer design
 - Dimension (# output neurons), activation function, loss function
- Hand-crafting weights to match a function

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

 $\partial \mathcal{L}(g,y)$

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters) $\frac{\partial \mathcal{L}(g, y)}{\partial Z^2}$

- Backward-pass (backpropagation)
 - Shared partial derivatives when evaluating gradients (w.r.t. different network parameters)

 $\partial \mathcal{L}(g,y)$

 ∂Z^2

