
6.390: Midterm Exam, Spring 2025

Solutions

• This exam is closed-book, and you may not use any electronic devices (including computers,
calculators, phones, etc.). The total exam time is 2 hours.

• One reference sheet (8.5 in. by 11 in.) with notes on both sides is permitted. Blank scratch
paper will also be provided if needed. You do not need to submit your reference sheet or the
scratch paper.

• The problems are not necessarily presented in any order of difficulty.

• Please write all answers in the provided boxes. If you need more space, clearly indicate near
the answer box where to find your work.

• Please write your Kerberos on every page of this exam.

• For all multiple choice questions, please choose all that apply.

• If you have a question, please come to us directly. You may also raise your hand, but if
we do not see you, please approach us.

• You may not discuss the details of the exam with anyone other than the course staff until
exam grades have been assigned and released.

Name: Kerberos:

Question: 1 2 3 4 5 6 Total

Points: 15 22 9 18 16 20 100

Score:

1



Kerberos:

Professor Regu LaRisashun

1. (15 points) Professor Regu LaRisashun loves exploring different forms of regularization, and is
currently testing a variety of choices for the regularization term R(θ).

She is only interested in linear regression, where the linear hypothesis h(x; θ) = θTx has no
offset θ0. Further, all of her work only considers objective functions with the form:

J(θ) =
1

n

n∑
i=1

(θTx(i) − y(i))2 + λR(θ).

You are pursuing a UROP (an undergraduate research position) in Prof. Regu’s lab, but you
have to pass an interview with Dr. Poe Stdoc first!

(a) Dr. Poe wants to test your understanding of ridge regression, where the regularization
term is given by R(θ) = ∥θ∥2. He provides various λ settings, and your task below is to
match each one to the corresponding magnitude of the optimal parameters θ∗.

i. λ goes to +∞

Solution:√
∥θ∗∥ = 0

⃝ ∥θ∗∥ goes to +∞

⃝ ∥θ∗∥ depends on the data

ii. λ = 0

Solution:
⃝ ∥θ∗∥ = 0

⃝ ∥θ∗∥ goes to +∞
√
∥θ∗∥ depends on the data

iii. λ goes to −∞

Solution:
⃝ ∥θ∗∥ = 0

√
∥θ∗∥ goes to +∞

⃝ ∥θ∗∥ depends on the data

Congratulations, you passed! Prof. Regu and Dr. Poe agree that you should join the team
and put you to work immediately.

(b) First, Prof. Regu wants to construct a regularizer that forces all entries of θ to be close
to her favorite number, 3.
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Kerberos:

How would you construct a regularization term R(θ) to achieve this?

Solution: R(θ) = ∥θ − 3∥2.

(c) Now, Professor Regu introduces a new “flexible” regularizer:

R(θ) =

∥∥∥∥∥
(
α

γ

)β

θ

∥∥∥∥∥
2

,

where α, β, and γ are strictly positive scalars.

Dr. Poe argues that this regularizer is not truly “new”—the same regularization effect
from any given λ, α, β, and γ can be achieved by an appropriate choice of hyperparameter
λridge in ridge regression.

Do you agree with Dr. Poe? If yes, describe how you would choose λridge to replicate the
regularization effect of the proposed regularizer. If no, explain why not.

Solution: λridge = λ
(
α
γ

)2β
.
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Kerberos:

(d) Finally, you investigate how nonlinear feature transformations affect model generalization
and performance by constructing a polynomial feature space of degree k > 0 and applying
analytical ridge regression.

To determine the optimal k for a given dataset D, you implement a 10-fold cross-validation
approach.

Below is incomplete pseudo-code for “Cross-Validation for Selecting Polynomial Basis Or-
der,” which you will refine to complete your algorithm:

Algorithm 1 Cross-Validation for Selecting Polynomial Basis Order

Require: Data D, ——(A)——
1: Divide D into 10 chunks D1,D2, . . . ,D10 (of roughly equal size)
2: ——(B)——
3: for ——(C)—— do
4: ——(D)——
5: for i = 1 to 10 do
6: Train hi on Dk \ Dk

i

7: Compute “test” error Ei(hi) on withheld data Dk
i

8: end for
9: ——(E)——

10: end for
11: return ——(F)——

Match each pseudo-code line below to its corresponding location in the algorithm. Each
line is used exactly once, and each location corresponds to a single pseudo-code line.

Solution:

Algorithm 2 Filled-In Cross-Validation for Selecting Polynomial Basis Order

Require: Data D, List of polynomial degrees C
1: Divide D into 10 chunks D1,D2, . . . ,D10 (of roughly equal size)

2: Error ← Empty List []

3: for k in C do
4: Transform Data Chunks ...

5: for i = 1 to 10 do
6: Train hi on Dk \ Dk

i

7: Compute “test” error Ei(hi) on withheld data Dk
i

8: end for

9: AddItem(Errors,
1

10

10∑
i

Ei(hi))

10: end for
11: return Polynomial degree in C that produced min(Errors)
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Kerberos:

Divide and Conquer

2. (22 points) Amy and Brandon want to compare different algorithms for learning linear regres-
sion hypothesis h(x; θ) = θTx with no offset θ0.

They first consider this data set Dtrain with n = 4 data points and d = 3 features below:

1 import numpy as np

2 X_train = np.array([

3 [-2, 4, -0.5],

4 [-1, 2, -1 ],

5 [ 1, -4, 1 ],

6 [ 2, -2, 0.5]

7 ])

8
9 Y_train = np.array([[-2, -1, 1, 2]]).T

(a) Amy says that it’s always the best to use the ordinary least squares closed-form formula:

θ∗ = (X⊤X)−1X⊤Y

where X ∈ Rn×d, Y ∈ Rn. She used this implementation from her 6.390 homework:

1 def lin_reg_analytic(X, Y):

2 return np.linalg.inv(X.T@X)@X.T@Y

Amy calls lin reg analytic(X train, Y train), which returns θ∗ = [[1, 0, 0]].T.

i. Using squared-error loss L(g, a) = (g − a)2 and the learned θ∗, what is the value of
the mean-squared-error (MSE) on Dtrain?

Solution: MSE on Dtrain = 0

ii. Consider a validation data set Dval with 6 data points:

1 X_val = np.array([

2 [-3, -2.2, 0.6],

3 [-2.5, -4.4, 1.2],

4 [-1.5, -1.6, 0.46],

5 [0, 1.1, -0.3],

6 [1.75, 2.2, -0.6],

7 [3, 6.6, -1.8],

8 ])

9 Y_val = np.array ([[1, 2, 0.75, -0.5, -1, -3]]).T

Amy found the MSE on this Dval is 14.19. Compare it to the MSE on Dtrain you
calculated above. How would you characterize the model’s performance based on
these errors?

Solution: The two MSEs suggest the model is overfitting.
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Kerberos:

iii. Which of the following could help alleviate the issue observed above?
Briefly justify your answer — explain why each option would or would not be helpful.

Solution:
⃝ Learn θ∗ to minimize the MSE on Dtrain by using gradient descent and

terminate only when |∇θJ(θ)| is sufficiently small.

√
Add ridge regularization to the objective function, then calcu-
late the optimal parameters of the ridge objective.

⃝ Change how we measure the validation error. Instead of MSE on Dval,
we calculate the mean-absolute-value loss L(g(i), y(i); θ∗) = |g(i) − y(i)|
on Dval.
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Kerberos:

(b) Unsatisfied with Amy’s closed-form solution, Brandon is developing his own algorithm:
BLA (“Brandon’s Learning Algorithm”):

1 # lin_reg_analytic , X_train and Y_train are the same as defined

previously in part (a), copied below for convenience.

2
3 X_train = np.array([

4 [-2, 4, -0.5],

5 [-1, 2, -1 ],

6 [ 1, -4, 1 ],

7 [ 2, -2, 0.5]

8 ])

9
10 Y_train = np.array([[-2, -1, 1, 2]]).T

11
12 def lin_reg_analytic(X, Y):

13 return np.linalg.inv(X.T@X)@X.T@Y

14
15 # now , Brandon ’s own algorithm below

16 def BLA(X, Y):

17 # X is nxd , Y is nx1

18 n, d = X.shape

19 th_is = []

20 for i in range(d):

21 th_i = lin_reg_analytic(X[:, i:i+1], Y)

22 th_is.append(th_i)

23 # recall that np.vstack () stacks arrays vertically

24 return (1/d)*np.vstack(th_is)

Brandon runs BLA(X train, Y train).

i. When i = 1 in line 20, what is the value of th i calculated in line 21?
(We expect a numerical answer; a fraction is fine.)

Solution:
− 9

20 or −0.45.
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Kerberos:

ii. What is the output shape of the returned array (in line 24)?
(We expect just the shape, not the entry values.)

Solution:
(3,1) or 3× 1

iii. Brandon gets θ∗BLA from running BLA(X train, Y train). Out of curiosity, he also tried
to minimize the ridge regression objective with λ = 1.9, and he learned parameters
θ∗ridge via the ridge-regression closed-form formula:

θ∗ridge = (X⊤X + nλI)−1X⊤Y

Using these learned parameters, Brandon calculated the MSE on the training data
set, and the validation data set. The results are shown in the table below:

Parameters MSE on Dtrain MSE on Dval

θ∗BLA 0.26 1.64

θ∗ridge 0.26 1.64

Does the table suggest that θ∗BLA = θ∗ridge?

Solution:
⃝ Yes, because only a unique θ can produce the matching MSE on the

given Dtrain and Dval.

⃝ Yes, because one can always rearrange the BLA solution formula to get
the analytical ridge regression solutions for any choice of λ.

⃝ Yes, because while the formulae for BLA and ridge regression are gen-
erally different, they are always equivalent when d ≤ 3.

√
No, because there are multiple θ values that could produce
the matching MSE on the given Dtrain and Dval, so there is not
enough info to determine if θ∗ridge = θ∗BLA.
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Kerberos:

(c) Consider a new training data set:

1 # New training data set

2 X2_train = np.array ([

3 [1, 2, 3],

4 [2, 3, 5],

5 [3, 4, 7],

6 [4, 5, 9],

7 ])

8 Y2_train = np.array ([[2, 4, 6, 8]]).T

9
10 # Amy’s and Brandon ’s learning algorithms; same as before , copied below

for convenience.

11
12 # X is nxd , Y is nx1

13
14 def lin_reg_analytic(X, Y):

15 return np.linalg.inv(X.T@X)@X.T@Y

16
17 def BLA(X, Y):

18 n, d = X.shape

19 th_is = []

20 for i in range(d):

21 th_i = lin_reg_analytic(X[:, i:i+1], Y)

22 th_is.append(th_i)

23 return 1/d*np.vstack(th_is)

Amy and Brandon use their learning algorithms on this new training data set. How will
their methods perform on the new data?

i. Amy’s approach of calling lin reg analytic(X2 train, Y2 train) will:

Solution:
⃝ Will return θ =[[7, 4.99, 3]].T.

⃝ Will return θ =[[6.67,5.11,3.01]].T.

⃝ Will return θ =[[0.67, 0.49, 0.28]].T.

√
Will not return a numerical vector, that is, will have run-time
error.

ii. Brandon’s approach of calling BLA(X2 train, Y2 train) will:

Solution:
⃝ Will return θ =[[7, 4.99, 3]].T.

⃝ Will return θ =[[6.67,5.11,3.01]].T.

√
Will return θ =[[0.67, 0.49, 0.28]].T.

⃝ Will not return a numerical vector, that is, will have run-time error.
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Kerberos:

Out and About in the Sun

3. (9 points) To help address climate change, there have been significant efforts to increase the
proportion of energy that is produced from low-carbon resources such as solar. One challenge,
however, is that the amount of solar power available at any given time varies based on the
weather.

To help manage this, power grid operators train machine learning models (often neural net-
works) to predict how much solar power will be available at particular times and locations.

We will consider the output layer and loss function design choices for our neural networks.

For each goal below, specify the number of neurons and the activation function in the output
layer, and loss function that you would use.

(a) Your goal is to predict the total amount of power (in MW) that will be produced.

Solution:

• Number of neurons: 1

• Activation function: Linear (ReLU is accepted too)

• Loss function: Squared-error

(b) Your goal is to predict whether or not the total amount of power will exceed a threshold
of 500 MW.

Solution:

• Number of neurons: 1

• Activation function: Sigmoid

• Loss function: NLL

(c) New England is split into 6 states, and your goal is to predict whether or not the total
amount of power in each state will exceed a particular (state-specific) threshold.

Solution:

• Number of neurons: 6

• Activation function: 6 separate sigmoids

• Loss function: sum of NLL losses; or average of NLL loss
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Kerberos:

Chasing Minima

4. (18 points) In this problem, we consider two simple data sets, each consisting of one-dimensional
features and labels. Our goal is to learn a linear regressor h(x; θ) = θx by minimizing the mean
squared error (MSE).

(a) First, consider a trivial data set made of a single data point with feature x = 2 and label
y = 4. The objective is to minimize

J(θ) = (2θ − 4)2.

The plots below show the behavior of running gradient descent (GD) in order to minimize
this objective function. We initialize GD with θinitial = 1, and run the algorithm for
two iterations. The first iteration uses learning rate η1, and the second iteration η2. The
numbers labeled on the plot indicate the value of θ at each iteration.

i. Which statement about the learning rates η1 and η2 is true?

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
0

1

2

3

4

5

1.00

1.80
1.96

θ

J
(θ
)

Solution:√
η1 = η2

⃝ η1 > η2

⃝ η1 < η2

⃝ not enough information to tell
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Kerberos:

ii. Which statement about the learning rates η1 and η2 is true?

−10 −8 −6 −4 −2 0 2 4 6
0

50

100

150
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300

350

1.00

5.00

−7.00

θ

J
(θ
)

Solution:√
η1 = η2

⃝ η1 > η2

⃝ η1 < η2

⃝ not enough information to tell
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Kerberos:

(b) Now, consider the slightly more interesting training data set, consisting of 3 data points:

Dtrain = {(x(i), y(i))}3i=1 = {(1, 4), (2, 5), (4, 7)}.

1 2 3 4 5
0

1

2

3

4

5

6

7

8

x

y

and the objective is to minimize, again, the MSE:

J(θ) =
1

3

[
(θ − 4)2 + (2θ − 5)2 + (4θ − 7)2

]
=

1

3

(
21θ2 − 84θ + 90

)
= 7θ2 − 28θ + 30.

i. Consider running gradient descent (GD) to learn θ. We initialize GD with θinitial = 4
and use a fixed learning rate of η = 0.02. After just one iteration of the GD update,
which of the following is a possible value for the resulting updated parameter θnew?
Briefly justify your answer.

Solution:
⃝ θnew = 4

⃝ θnew = 3.76

√
θnew = 3.44

⃝ θnew = 2.56

⃝ θnew = 0.88

⃝ Not enough information to determine any possible value of θnew.
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Kerberos:

ii. Consider running stochastic gradient descent (SGD) to learn θ. We initialize SGD
with θinitial = 4 and use a fixed learning rate of η = 0.02. After just one iteration of
the GD update, which of the following is a possible value for the resulting updated
parameter θnew? Briefly justify your answer.

Solution:√
θnew = 4

√
θnew = 3.76

⃝ θnew = 3.44

√
θnew = 2.56

⃝ θnew = 0.88

⃝ Not enough information to determine any possible value of θnew.
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Kerberos:

Go Separate Ways

5. (16 points) Consider a binary classification problem with training data {(x(i), y(i))}ni=1, where
each x(i) ∈ Rd and y(i) ∈ {0,+1}.
(a) Assume d = 3. Consider linear binary classifiers that predict +1 when θTx + θ0 > 0 and

0 otherwise.

i. For a linear binary classifier given by θ = [1,−1, 2]T , θ0 = 0. Which of the following
points x are classified as +1?

Solution:√
x(1) = [1,−1, 2]T

√
x(2) = [1, 2, 3]T

⃝ x(3) = [−1,−1,−1]T

√
x(4) = [1, 1, 1]T

ii. Recall that a separator is defined as {x : θTx+ θ0 = 0}. Suppose the parameters from
the previous part define the separator s1.
Now consider a separator s2 defined by θnew = [−1, 1,−2]T , θ0new = 0.
Is the separator s2 identical to s1?

Solution:√
Yes

⃝ No

iii. Which of the following points are classified as +1 using the classifier given by θnew, θ0new?

Solution:
⃝ x(1) = [1,−1, 2]T

⃝ x(2) = [1, 2, 3]T

√
x(3) = [−1,−1,−1]T

⃝ x(4) = [1, 1, 1]T
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Kerberos:

(b) Recall that a linear logistic classifier predicts +1 if σ(θTx + θ0) > 0.5 and 0 otherwise,
where

σ(z) =
1

1 + e−z
.

i. Which of the following points are classified as +1 using a linear logistic classifier given
by θ = [1,−1, 2]T , θ0 = 0?

Solution:

√
x(1) = [1,−1, 2]T

√
x(2) = [1, 2, 3]T

⃝ x(3) = [−1,−1,−1]T

√
x(4) = [1, 1, 1]T

(c) Again, assume d = 3. Consider a data point with x = [10,−1, 2]T and y = +1. A linear
logistic classifier with θ = [1,−1, 2]T and θ0 = 0 correctly predicts the label for this point.

Recall that the negative log-likelihood (NLL) loss is:

L(g, y) = − [y log g + (1− y) log (1− g)] ,

where g = σ(θTx+ θ0).

Consider logistic classifiers defined by the following parameters.

i. Which classifier achieves the lowest NLL loss on this data point?

Solution:
⃝ θ = [1,−1, 2]T , θ0 = 0

⃝ θ = 10 ∗ [1,−1, 2]T , θ0 = 10

√
θ = 20 ∗ [1,−1, 2]T , θ0 = 20

⃝ θ = −30 ∗ [1,−1, 2]T , θ0 = −30

ii. Which classifier achieves the highest NLL loss on this data point?

Solution:
⃝ θ = [1,−1, 2]T , θ0 = 0

⃝ θ = 10 ∗ [1,−1, 2]T , θ0 = 10

⃝ θ = 20 ∗ [1,−1, 2]T , θ0 = 20

√
θ = −30 ∗ [1,−1, 2]T , θ0 = −30
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Kerberos:

(d) Consider a linearly separable dataset with features x ∈ Rd. If we permute the order of
these d features, does the dataset remain linearly separable?

Solution:
√

Always yes

⃝ Always no

⃝ Depends on the permutation order.

(e) Consider a not linearly separable dataset with features x ∈ Rd. Suppose we select two
features, xi (the i-th feature) and xj (the j-th feature), and form a new feature axi + bxj
using real scalars a, b.

We then construct an augmented dataset with features and labels:

xnew = [x, axi + bxj ]
T ∈ Rd+1, ynew = y.

Is the new dataset linearly separable?

Solution:

⃝ Always yes

√
Always no

⃝ Depends on the choice of a, and b.
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Kerberos:

I LAF in the Face of Neural Networks

6. (20 points) Recall that in class, we have studied fully-connected feed-forward neural networks.
In this setting, a neuron maps the m-dimensional input x to scalar output a as follows:

a = f

 m∑
j=1

xj wj

+ w0

 = f
(
wTx+ w0

)
(1)

where f : R → R is some fixed activation function, and w ∈ Rm, w0 ∈ R are the learnable
parameters.

Let’s now envision an alternative neural network structure, called a Learnable Activation Func-
tion (LAF) network, in which the activation functions are learnable. In this LAF setting, a
neuron maps the m-dimensional input x to scalar output a as follows:

a =
m∑
j=1

ϕj(xj) =
m∑
j=1

(bjg(xj) + cjh(xj)) .

where a separate activation function ϕj : R→ R is defined for each feature xj , all bj , cj ∈ R are
learnable parameters, and g : R→ R, h : R→ R are some fixed functions.

(a) Consider a LAF depicted below. It has L = 2 layers, where the first layer has 2 neurons
and the second layer, the output layer, has 1 neuron.

We use ϕγ
α,β to represent the activation function of the α-th feature, in the β-th neuron,

of the γ-th layer.

x1

x2

ϕ1
1,1

ϕ1
1,2

ϕ1
2,1

ϕ1
2,2

Σ

Σ

ϕ2
1,1

ϕ2
2,1

Σ a21

a11

a12

(This is loosely inspired by a recent paper proposing a new neural network structure called
a Kolmogorov–Arnold Network.)

i. Write an expression for a11 in terms of the network input x and learnable activation
functions (ϕ1

1,1, ϕ
1
1,2, ϕ

1
2,1, ϕ

1
2,2,, ϕ

2
1,1, ϕ

2
2,1)

Solution: a11 = ϕ1
1,1(x1) + ϕ1

2,1(x2).
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Kerberos:

ii. Write an expression for a21 in terms of the network input x and learnable activation
functions (ϕ1

1,1, ϕ
1
1,2, ϕ

1
2,1, ϕ

1
2,2,, ϕ

2
1,1, ϕ

2
2,1)

Solution: a21 = ϕ2
1,1(a

1
1) + ϕ2

2,1(a
1
2)

= ϕ2
1,1

(
ϕ1
1,1(x1) + ϕ1

2,1(x2)
)
+ ϕ2

2,1

(
ϕ1
1,2(x1) + ϕ1

2,2(x2)
)
.

(b) Consider a network with L layers: L− 1 hidden layers and one output layer. Assume that
the network input feature is N−dimensional (i.e. in equation (1), m = N). Assume also
that every layer has N neurons. In other words, all layers have the same width N .

For reference, the LAF described in part (a) violates the equal-width assumption.

i. Given the network specification (i.e., L layers of equal width N), how many learnable
parameters does our typical feed-forward neural networks have?
(We expect your answer to be a function of L and N .)

Solution: L(N2 +N)

ii. Given the network specification (i.e., L layers of equal width N), how many learnable
parameters does a LAF have?
(We expect your answer to be a function of L and N .)

Solution: L× 2N2.

(c) As part of backpropagation through the LAF, we will need to compute gradient updates
with respect to all layer inputs and parameters. For convenience, we repeat the activation
equation below:

a =

m∑
j=1

ϕj(xj) =

m∑
j=1

(bjg(xj) + cjh(xj)) .

For all subparts below, you may express your answers as functions of g and h as needed.

i. What is ∂a/∂bj for any given j = 1, . . . ,m?

Solution: ∂a/∂bj = g(xj).

ii. What is ∂a/∂cj for any given j = 1, . . . ,m?

Solution: ∂a/∂cj = h(xj).

iii. What is ∂a/∂xj for any given j = 1, . . . ,m?

Solution: ∂a/∂xj = bj
∂g(xj)
∂xj

+ cj
∂h(xj)
∂xj

.

This is the end of the exam.
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