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CheXNet (Stanford, 2017)

An ML system trained on 112K labeled chest X-
rays
Detects pneumonia at radiologist-level
accuracy
Heatmap shows where the model "looks"

 
Input: X-ray image & label (disease / no disease) →
Output: diagnosis + localization

Medicine
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Tabula Sapiens (CZI, 2022)

500K+ human cells profiled by
gene expression
Clustering reveals cell types
across 24 organs — no predefined
labels
Each dot = one cell; color = organ
of origin

 
Input: gene expression vectors
→ Output: discovered groupings

Science
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https://www.pi.website/blog/pistar06

Robotics

π*0.6 (Physical Intelligence, 2025)

Vision-language-action model learns
from demos + practice
Makes espresso, folds laundry,
assembles boxes
No task-specific programming —
learns by trial and reward

 
State: camera image → Action: motor commands
→ Reward: task completion
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traditionally

supervised
learning

unsupervised
learning

reinforcement
learning
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nowadays

supervised
learning

unsupervised
learning

reinforcement
learning

self-supervised
contrastive learning (DALL-E)

behavior cloning

Reinforcement
Learning with

Human Feedback
(ChatGPT etc.)

Unsupervised skill discovery
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In 6.390:

supervised
learning

reinforcement
learning

unsupervised
learning
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Outline

Course overview

Supervised learning terminologies 

Ordinary least squares regression
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Intro to ML

Regression and Regularization

Gradient Descent

Linear Classification

Features, Neural Networks I

Neural Networks II (Backprop)

Convolutional Neural Networks

Representation Learning

Transformers

Markov Decision Processes

Reinforcement Learning

Non-parametric Models

Topics in order:
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Model class:
linear models
linear model on non-linear features
fully connected feed-forward nets
convolutional nets
transformers
Q-table
tree, k-nearest neighbor, k-means

Optimization:
analytical solutions
gradient descent
back propagation
value iteration, Q-learning
non-parametric methods

Learning process:
training/validation/testing
overfitting/underfitting
regularization
hyper parameters

Modeling choices:
Supervised:

regression
classification

Unsupervised/self-supervised
Reinforcement/sequential

Many other ways to dissect

[These lists are neither exhaustive nor exclusive.] 11



After 6.390, you can…

Frame ML problems: problem class, assumptions, evaluation.

Build baselines and measure generalization (train vs. test).

Implement and reason about regression and classification.

Optimize models with gradients (SGD) and regularization.

Work with representations and neural networks.

Understand modern LLM mechanisms (transformers) and MDP/RL basics.

generalization loss train/test regularization SGD
backprop representations CNNs attention transformers
MDP reinforcement learning
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Week # Monday Tuesday Wednesday Thursday Friday

N
Exercise N Homework N Exercise N

Recitation N
Lecture N Lab N

N+1 Homework N

Class meetings 

released

due

Hours:
Lec: 1.5 hr
Rec + Lab: 3 hr
Notes + exercise: 2 hr
Homework: 6-7 hr

A typical content week in 6.390:

13



Grading

Our objective (and we hope yours) is for you to learn about machine learning — take
responsibility for your understanding; we are here to help!
Grades formula: exercises 5% + homework 20% + labs 15% + midterms 30% + final 30%
Lateness: 20% penalty per day, applied linearly (so 1 hour late is -0.83%)
20 one-day extensions, applied automatically on May 13 to maximize your benefit

 

 

Midterm 1: Thursday, March 12, 7:30–9pm
Midterm 2: Wednesday, April 15, 7:30–9pm
Final: scheduled by Registrar (posted in 3rd week). ⚠  – might be as late as May 21!
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Collaboration and How to Get Help

Understand everything you turn in

Coding and detailed derivations must be done by you

See collaboration policy/examples on course web site

 

Office hours: lots!  (Starting this Thursday)

See Google Calendar for holiday/schedule shift

Make use of Piazza and Pset-partners

Logistic, personal issues, reach out to

                                 6.390-personal@mit.edu (looping in S^3 and/or DAS)
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Outline

Course overview

Supervised learning terminologies

Ordinary least squares regression

16



an instance supervised learning known as regression: predicting a continuous number

e.g., want to predict a city's energy usage

go collect some data in various cities

temperature x

energy
used y

toy data, for illustration only

City Feature Label

Temperature Energy Used

Chicago 90 45

New York 20 32

Boston 35 99

San Diego 18 39
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temperature x

energy
used y

x , y ,… , x , y{( (1) (1)) ( (4) (4))}D :=train

x   ∈(1) R

labelfeature

y ∈(1) R

(x , y )(1) (1)

Training data:
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temperature x1
population x2

energy
used y

x =(1)   ∈[x1(1)
x  2
(1)

] R2

labelfeature vector

y ∈(1) R

D :=train x , y ,… , x , y{( (1) (1)) ( (4) (4))}

(x , y )(1) (1) = , y
x1
(1)

x2
(1)

(1)

Training data:
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x =(1)   ∈

x1
(1)

x2
(1)

⋮

xd
(1)

Rd

labelfeature vector

y ∈(1) R

D :=train x , y ,… , x , y{( (1) (1)) ( (n) (n))}

 data points, each with -dimensional
features and scalar label
n d

temperature x1
population x2

energy
used y

n = 4, d = 1

n = 4, d = 2

temperature x1

20

energy
used y

Training data:



Training data in matrix-vector form:

City Feature Label

Temperature Energy Used

Chicago 90 45

New York 20 32

Boston 35 99

San Diego 18 39

X =

90
20
35
18

Y =

45
32
99
39

∈ R4×1 ∈ R4×1

temperature x

energy
used y

temperature x1 population x2

energy
used y City Features Label

Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

X =

90
20
35
18

7.2
9.5
8.4
4.3

Y =

45
32
99
39

∈ R4×2 ∈ R4×1
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h

Regression
Algorithm
💻

→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →

What do we want from the regression algortim?
A good way to label new features, i.e. a good hypothesis.

Learning algorithm spits out a hypothesis

hypothesis
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Loss L h x , y( ( (i)) (i))

temperature x

h(x) = 10

e.g. h x −( (4)) y(4)

energy
used y

E (h) =train  L h x , y
n
1 ∑i=1

n ( ( (i)) (i))Training error 

E (h) =test  L h x , y
n′
1 ∑i=n+1

n+n′ ( ( (i)) (i))Test error

i.e. average loss on  unseen test data pointsn′
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set of  we ask the algorithm to search overhHypothesis class H :

temperature x

energy
used y

h (x) =1 10

h (x) =2 20

h (x) =3 30

24

constant functions{ } ⊂

less expressive more expressive

linear functions{ }1

temperature x

energy
used y

h(x) = 3x− 5

h(x) = 4x+ 2

1. technically, affine functions. ML community tends to be flexible about this terminology.



h→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →

🧠 ⚙ 

hypothesis class
loss function

 

Regression
Algorithm
💻

supervised learning regression training data test data features label loss function
training error test error hypothesis hypothesis class

Quick summary:
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Outline

Course overview

Supervised learning terminologies 

Ordinary least squares regression
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Why least squares?

Problem: infer orbit parameters from noisy, partial
measurements.
Idea: pick parameters that make predictions match
observations as closely as possible, by minimize the
sum of squared residuals.
Today: still a fast, reliable, interpretable baseline.

Primary source: Gauss,
Theoria motus (1809).

Observation table:
Piazzi’s measurements of

Ceres (1801).
27



h→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →

🧠 ⚙ 

hypothesis class
loss function

 

Regression
Algorithm
💻

General regression
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→
↓

y

x

↓

∈ Rd

∈ R

Dtrain →

🧠 ⚙ 

linear hypothesis class
squared loss function

 

Closed-form
formula
💻

Ordinary least squares regression

h
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Linear hypothesis class:

h x; θ( )   = [ θ1 θ2 ⋯ θd ]

x1
x2

⋮
xd

parameters

Squared loss function: L h x , y =( ( (i)) (i)) (θ x −T (i) y )(i) 2

temperature x1
population x2

energy
used y

for now, ignoring the offset

= xθT

features

Ordinary least squares regression
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Deriving the OLS solution

1. Write the training error  in scalar formJ(θ)

2. Rearrange into matrix-vector form

3. Set the gradient  to zero ∇ Jθ

4. Solve for the optimal parameters 

Note: step 3  4 ( ) isn't always true in general.
We'll discuss when this implication breaks in Week 3.

→ ∇ J(θ) =θ 0 ⟹ θ is a minimizer

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

θ =∗ X X X Y( ⊤ )−1 ⊤
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J(θ) = [(θ ⋅4
1

1 90 + θ ⋅2 7.2 − 45) +2 (θ ⋅1 20 + θ ⋅2 9.5 − 32) +2 (θ ⋅1 35 + θ ⋅2 8.4 − 99) +2 (θ ⋅1 18 + θ ⋅2 4.3 − 39) ]2

City Features Label

Temp (°F) Pop (M) Energy (kWh)

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

1. Write out training error:

e.g.:

Q: What kind of function is ? J(θ)

A: Quadratic function

Q: What does  look like?J(θ)

A: Typically, looks like a "bowl"

θ = [θ1
θ2

]∈ R2×1
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X =

90
20
35
18

7.2
9.5
8.4
4.3

∈ R4×2

Y =

45
32
99
39

∈ R4×1

J(θ) = [(θ ⋅4
1

1 90 + θ ⋅2 7.2 − 45) +2 (θ ⋅1 20 + θ ⋅2 9.5 − 32) +2 (θ ⋅1 35 + θ ⋅2 8.4 − 99) +2 (θ ⋅1 18 + θ ⋅2 4.3 − 39) ]2

θ = [θ1
θ2

]

∈ R2×1

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

City Features Label

Temp (°F) Pop (M) Energy (kWh)

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 99

San Diego 18 4.3 39

2. Rearrange training error into matrix-vector form

⇒
33



Typically,  "curves up"
The minimizer of  necessarily has a gradient zero.

J(θ)
J(θ)

3. Get the gradient ∇ Jθ = set  0

4. Set the gradient ∇ Jθ = set  0

∇ J =θ

∂J/∂θ1

⋮
∂J/∂θd

⇒

= X Xθ −X Y
n
2 ( T T )

θ =∗ X X X Y( ⊤ )
−1 ⊤
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When  is well defined, it's the unique minimizer of   )

Closed-form solution, does not feel like "training"

Very rare case where we get a general and clean solution with nice theoretical guarantee.

θ∗ J(θ

The beauty of

θ =∗ X X X Y( ⊤ )−1 ⊤
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Summary

Terminologies:

 

 

Ordinary least squares regression:

linear hypothesis class, squared loss, mean-squared error

matrix-vector form objective

closed-form solution

J(θ)  = (Xθ −
n
1 Y ) (Xθ −⊤ Y )

supervised learning regression training data test data features label loss function
training error test error hypothesis hypothesis class

θ =∗ X X X Y( ⊤ )−1 ⊤
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When is this  not well defined? θ∗

What can cause this "not well defined"?

What happens if we are just "close to not well-defined", aka "ill-conditioned"?

We'll discuss all these next week.

When  is well defined, it's the unique minimizer of )θ∗ J(θ

θ =∗ X X X Y( ⊤ )−1 ⊤

Looking ahead:
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Reference: Gradient Vector Refresher

(5 important facts for 6.390)
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For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.
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∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

3. The gradient can be symbolic or numerical.

f(x, y, z) = x +2 y +3 zexample:

its symbolic gradient:

just like a derivative can be a function or a number.

evaluating the symbolic gradient at a point gives a numerical gradient:

∇f(x, y, z) =
2x
3y2

1

∇f(3, 2, 1) = ∇f(x, y, z) =
(x,y,z)=(3,2,1)

6
12
1
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4. The gradient points in the direction of the (steepest) increase in the function value.

 

cos(x) =
dx
d

x=−4
−sin(−4) ≈ −0.7568

 

cos(x) =
dx
d

x=5
−sin(5) ≈ 0.9589

f(x) = cos(x)

x
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5. The gradient at the function minimizer is necessarily zero.

f(x) = cos(x)

x
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For , its gradient   is defined at the point  as: f : R →m R ∇f : R →m Rm p = x ,… ,x( 1 m)

∇f(p) =

(p)∂x1
∂f

⋮
(p)∂xm

∂f

Sometimes the gradient is undefined or ill-behaved, but today it is well-behaved.

1. The gradient generalizes the concept of a derivative to multiple dimensions.

2. By construction, the gradient's dimensionality always matches the function input.

3. The gradient can be symbolic or numerical.

4. The gradient points in the direction of the (steepest) increase in the function value.

5. The gradient at the function minimizer is necessarily zero.
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Extension: How to deal with offset θ0

1. center the data; or
2. append a fake feature of 1
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Features Label

City Temperature Population Energy Used

Chicago 49.25 -0.15 -9.00

New York -20.75 2.15 -22.00

Boston -5.75 1.05 46.00

San Diego -22.75 -3.05 -15.00

Features Label

City Temperature Population Energy Used

Chicago 90 7.2 45

New York 20 9.5 32

Boston 35 8.4 100

San Diego 18 4.3 39

1. "center" the data

when data is centered, the optimal offset is guaranteed to be 0

centering⇓

all column-wise Σ = 0
45



temperature x1

energy
used y

2. Append a "fake" feature of  1

h x; θ, θ =( 0) θ x+T θ0   = [ θ1 θ2 ⋯ θd ] +

x1
x2

⋮
xd

θ0

  = [ θ1 θ2 ⋯ θd θ0 ]

x1
x2

⋮
xd
1

 = θ xaug
T

aug

trick our model: treat the bias as just another feature, always equal to 1.
See recitation 1 for details.
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